GENERALIZATIONS OF ZECKENDORF'S THEOREM

TIMOTHY J. KELLER
Student, Harvey Mudd College, Claremont, California 91711

The Fibonacci numbers F_{n} are defined by the recurrence relation

$$
\begin{gathered}
\mathrm{F}_{1}=\mathrm{F}_{2}=1, \\
\mathrm{~F}_{\mathrm{n}}=\mathrm{F}_{\mathrm{n}-1}+\mathrm{F}_{\mathrm{n}-2} \quad(\mathrm{n}>2) .
\end{gathered}
$$

Every natural number has a representation as a sum of distinct Fibonacci numbers, but such representations are not in general unique. When constraints are added to make such representations unique, the result is Zeckendorf's theorem [1], [5]. Statements of Zeckendorf's theorem and its converse follow. (Alpha is an integer.)

Theorem. (Zeckendorf). Every natural number N has a unique representation in the form

$$
\mathrm{N}=\sum_{2}^{\mathrm{n}} \alpha_{\mathrm{k}} \mathrm{~F}_{\mathrm{k}}
$$

where $0 \leq \alpha_{k} \leq 1$ and if $\alpha_{k+1}=1$, then $\alpha_{k}=0$.
Theorem. (Converse of Zeckendorf's Theorem) ([1], [3]). Let

$$
\left\{\mathrm{x}_{\mathrm{n}}\right\}_{1}^{\infty}
$$

be a monotone sequence of distinct natural numbers such that every natural number N has a unique representation in the form

$$
N=\sum_{1}^{n} \alpha_{k} x_{k}
$$

where $0 \leq \alpha_{k} \leq 1$ and if $\alpha_{k+1}=1$, then $\alpha_{k}=0$. Then

$$
\left\{\mathrm{x}_{\mathrm{n}}\right\}_{1}^{\infty}=\left\{\mathrm{F}_{\mathrm{n}}\right\}_{2}^{\infty} .
$$

There are generalizations of Zeckendorf's theorem for every monotone sequence $\left\{\mathrm{x}_{\mathrm{n}}\right\}_{1}^{\infty}$ of distinct natural numbers for which $\mathrm{x}_{1}=1$. The following theorem is the first of many such generalizations.

Theorem 1. Let the numbers x_{n} be defined by the recurrence relation

$$
\begin{gathered}
x_{1}=1, \quad x_{2}=a \\
x_{n}=m_{1} x_{n-1}+m_{2} x_{n-2} \quad(n=2),
\end{gathered}
$$

where $m_{1}>0, m_{2}>0$, and $a>1$. Then every natural number N has a unique representation in the form

$$
\mathrm{N}=\sum_{1}^{\mathrm{n}} \alpha_{\mathrm{k}} \mathrm{x}_{\mathrm{k}} \text {, }
$$

where $\alpha_{\mathrm{k}} \geq 0$ and if $\alpha_{\mathrm{k}+\mathrm{p}+1} \neq \mathrm{m}_{1}, \quad \alpha_{\mathrm{k}+\mathrm{i}}=\mathrm{m}_{1}$ for $1 \leq \mathrm{i} \leq \mathrm{p}$.
i) and p is odd, then $\alpha_{k}<m_{2}$;
ii) p is even, and $\mathrm{k}=1$, then $\alpha_{\mathrm{k}} \leq \mathrm{m}_{1}$;
iii) p is even, and $\mathrm{k}=1$, then $\alpha_{1}<\mathrm{a}$.

The special case $m_{1}=m_{2}=1, a=2$ is Zeckendorf's theorem, and the case $m_{2}=1$, $a=m_{1}$ is a generalization proved by Hoggatt.(See p.89)

Proof. We prove the existence of a representation by induction on N . For $N<x_{2}$, we have $N=N x_{1}$. Take $N \geq x_{2}$ and assume representability for $1,2, \cdots, N-1$. Since $\left\{x_{n}\right\}_{1}^{\infty}$ is a monotone sequence of distinct natural numbers, any natural number lies between some pair of successive elements of $\left\{\mathrm{x}_{\mathrm{n}}\right\}_{1}^{\infty}$. More explicitly, there is a unique $\mathrm{n} \geq 2$ such that $\mathrm{x}_{\mathrm{n}} \leq N$ $<x_{n+1}$. First let $N<m_{1} x_{n}$. There are unique integers m and r such that

$$
\mathrm{N}=\mathrm{m} \mathrm{x}_{\mathrm{n}}+\mathrm{r},
$$

where $0<m<m_{1}$ and $0 \leq r<x_{n}$. If $r=0$, then $N=m x_{n}$, whereas if $r>0$, then the induction hypothesis shows that r is representable. Thus N is representable. Now let $N \geq m_{1} x_{n}$. Since

$$
x_{n+1}=m_{1} x_{n}+m_{2} x_{n-1}
$$

for $n \geq 2$, there are unique integers m and r such that

$$
N=m_{1} x_{n}+m x_{n-1}+r,
$$

where $0 \leq m<m_{2}$ and $0 \leq r<x_{n-1^{\circ}}$ If $r=0$, then

$$
N=m_{1} x_{n}+m x_{n-1},
$$

whereas if $r>0$, then r is representable. Thus N is representable. Now use the induction principle.

To prove the uniqueness of this representation, it is sufficient to prove that x_{n} is greater than the maximum admissible sum of numbers less than x_{n} according to constraints (i)-(iii). We prove this by induction on n. For $\mathrm{n}=1$, this is obviously true. Take $\mathrm{n}=1$ and assume that the sufficient condition is true for $1,2, \cdots, n-1$. From

$$
\begin{aligned}
& \sum_{2}^{n}\left\{m_{1} x_{2 i-2}+\left(m_{2}-1\right) x_{2 i-3}\right\}=\sum_{2}^{n} x_{2 i-1}-\sum_{1}^{n-1} x_{2 i-1}=x_{2 n-1}-1, \\
& \sum_{2}^{n}\left\{m_{1} x_{2 i-1}+\left(m_{2}-1\right) x_{2 i-2}\right\}=\sum_{2}^{n} x_{2 i}-\sum_{1}^{n-1} x_{2 i}=x_{2 n}-a
\end{aligned}
$$

we obtain the identities
(1)

$$
x_{2 n-1}=\sum_{2}^{n}\left\{m_{1} x_{2 i-2}+\left(m_{2}-1\right) x_{2 i-3}\right\}+1
$$

$$
x_{2 n}=\sum_{2}^{n}\left\{m_{1} x_{2 i-1}+\left(m_{2}-1\right) x_{2 i-2}\right\}+(a-1) x_{1}+1
$$

The induction hypothesis together with (1) shows that x_{n} is greater than the maximum admissible sum of numbers less than x_{n}. Now use the induction principle.

Theorem 1 can be extended to the case where the numbers x_{n} are defined by the recurrence relation

$$
\begin{aligned}
& x_{1}=1, \quad x_{n}=a_{n}(2 \leq n \leq q) \\
& x_{n}=\sum_{1}^{q} m_{k} x_{n-k} \quad(n>q)
\end{aligned}
$$

where $m_{1}>0, m_{k} \geq 0$ for $1<k<q, m_{q}=0$, and $1<a_{n}<a_{n+1}$ for $1<\mathrm{n}<\mathrm{q}$. Every natural number N has a unique representation in the form

$$
\mathrm{N}=\sum_{1}^{\mathrm{n}} \alpha_{\mathrm{k}} \mathrm{x}_{\mathrm{k}}
$$

where $\alpha_{k} \geq 0$ and other constraints similar to those in Theorem 1 are added. For example, if $\alpha_{n-k+1}=m_{k}$ for $1 \leq k<p<q$, then $\alpha_{n-p+1} \leq m_{p}$. If $\mathrm{p}=\mathrm{q}$, then $\alpha_{\mathrm{n}-\mathrm{q}+1}<\mathrm{m}_{\mathrm{q}}$. These constraints must be modified to fit the initial conditions a_{n}. The proof of this extension follows that of Theorem 1 and uses the identity

$$
\begin{gathered}
x_{q n-r}=\sum_{1}^{q-1} m_{k} \sum_{2}^{n} x_{q i-r-k}+\left(m_{q}-1\right) \sum_{1}^{n-1} x_{q i-r}+\left[\frac{a_{q-r}-1}{a_{q-r-1}}\right] x_{q-r-1} \\
+\left[\frac{a_{q-r}-\left[\frac{a_{q-r}-1}{a_{q-r-1}}\right] a_{q-r-1}-1}{a_{q-r-2}}\right] x_{q-r-2}+\cdots+\left(a_{q-r}-\left[\frac{a_{q-r}-1}{a_{q-r-1}}\right] a_{q-r-1}-\cdots-1\right) \\
\cdot x_{1}+1
\end{gathered} \begin{gathered}
(0 \leq r<q) .
\end{gathered}
$$

Statements of two special cases and the proof of the second one follow.
Theorem. (Daykin [3]). Let the numbers x_{n} be defined by the recurrence relation

$$
\begin{gathered}
x_{n}=n(1 \leq n \leq q) \\
x_{n}=x_{n-1}+x_{n-q} \quad(n>q)
\end{gathered}
$$

Then every natural number N has a unique representation in the form

$$
\mathrm{N}=\sum_{1}^{\mathrm{n}} \alpha_{\mathrm{k}} \mathrm{x}_{\mathrm{k}}
$$

where $0 \leq \alpha_{k} \leq 1$ and if $\alpha_{k+q-1}=1$, then $\alpha_{k+i}=0$ for $0 \leq i<q-1$.
Theorem 2. Let the numbers x_{n} be defined by the recurrence relation

$$
\begin{aligned}
& x_{n}=(m+1)^{n-1}(1 \leq n \leq q) \\
& x_{n}=m \sum_{1}^{q} x_{n-k} \quad(n>q)
\end{aligned}
$$

Then every natural number N has a unique representation in the form

$$
\mathrm{N}=\sum_{1}^{\mathrm{n}} \alpha_{\mathrm{k}} \mathrm{x}_{\mathrm{k}}
$$

where $0 \leq \alpha_{k} \leq m$ and if $\alpha_{k+i}=m$ for $1 \leq i<q$, then $\alpha_{k}<m$.
Proof. Following the proof of Theorem 1, we prove the existence of a representation by induction on N. For $N<x_{q}$, we have

$$
N=\sum_{1}^{q-1} \alpha_{k} x_{k}
$$

where $0 \leq \alpha_{k} \leq m$. Take $N \geq x_{q}$ and assume representability for 1,2 , $\cdots, N-1$. There is a unique $n \geq q$ such that $x_{n} \leq N<x_{n+1}$. Since

$$
x_{n+1}=m \sum_{0}^{q-1} x_{n-k}
$$

for $n \geq q$, there are unique integers p, m^{\prime}, and r such that

$$
\mathrm{N}=\mathrm{m} \sum_{0}^{\mathrm{p}-1} \mathrm{x}_{\mathrm{n}-\mathrm{k}}+\mathrm{m}^{\prime} \mathrm{x}_{\mathrm{n}-\mathrm{p}}+\mathrm{r}
$$

where $0 \leq \mathrm{p}<\mathrm{q}, 0 \leq \mathrm{m}^{\prime}<\mathrm{m}$, and $0 \leq \mathrm{r}<\mathrm{x}_{\mathrm{n}-\mathrm{p}}$. If $\mathrm{r}=0$, then

$$
\mathrm{N}=\mathrm{m} \sum_{0}^{\mathrm{p}-1} \mathrm{x}_{\mathrm{n}-\mathrm{k}}+\mathrm{m}^{\prime} \mathrm{x}_{\mathrm{n}-\mathrm{p}}
$$

whereas if $r>0$, then r is representable. Thus N is representable. Now use the induction principle.

To prove the uniqueness of this representation, we prove that x_{n} is greater than the maximum admissible sum of numbers less than x_{n} according to the constraints by induction on n. For $1 \leq n \leq q$, we have

$$
m_{1} \sum_{1}^{n-1} x_{k}=m \sum_{1}^{n-1}(m+1)^{k-1}=(m+1)^{n-1}-1<(m+1)^{n-1}=x_{n}
$$

Take $\mathrm{n}>\mathrm{q}$ and assume that the sufficient condition is true for $\mathrm{n}-\mathrm{q}$. Then

$$
x_{n}=m \sum_{1}^{q-1} x_{n-k}+(m-1) x_{n-q}+x_{n-q}
$$

The induction hypothesis shows that x_{n} is greater than the maximum admissible sum of numbers less than x_{n}. Now use the induction principle.

Zeckendorf's theorem can be further generalized to cases where the numbers x_{n} are defined by recurrence relations with negative coefficients. Theorem 3. Let the numbers x_{n} be defined by the recurrence relation

$$
\begin{gathered}
x_{1}=1, \quad x_{2}=a \\
x_{n}=m_{1} x_{n-1}-m_{2} x_{n-2} \quad(n>2),
\end{gathered}
$$

where $0<\mathrm{m}_{2}<\mathrm{m}_{1}$ and $\mathrm{a}>\mathrm{m}_{2}$. Then every natural number N has a unique representation in the form

$$
N=\sum_{1}^{n} \alpha_{k} x_{k}
$$

where $0 \leq \alpha_{k}<m_{1}$ for $k>1,0 \leq \alpha_{1}<a$, and if $\alpha_{k+p+1}=m_{1}-1$,

$$
\alpha_{\mathrm{k}+\mathrm{i}}=\mathrm{m}_{1}-\mathrm{m}_{2}-1
$$

for $1 \leq i \leq p$, and
(i) $\mathrm{k}>1$, then $\alpha_{\mathrm{k}}<\mathrm{m}_{1}-\mathrm{m}_{2}$;
(ii) $\mathrm{k}=1$, then $\alpha_{1}<a-\mathrm{m}_{2}$.

The proof, which will not be given, follows that of Theorem 1 and uses the identity

$$
x_{n}=\left(m_{1}-1\right) x_{n-1}+\left(m_{1}-m_{2}-1\right) \sum_{2}^{n-2} x_{i}+\left(a-m_{2}-1\right) x_{1}+1
$$

The converse of Zeckendorf's theorem can be generalized to include as special cases the converses of the generalizations of Zeckendorf's theorem given so far.

Theorem 4. Let $\left\{\mathrm{x}_{\mathrm{n}}\right\}_{1}^{\infty}$ be a monotone sequence of distinct natural numbers such that every natural number N has a unique representation in the form

$$
\mathrm{N}=\sum_{1}^{\mathrm{n}} \alpha_{\mathrm{k}} \mathrm{x}_{\mathrm{k}}
$$

where $\alpha_{k} \geq 0$ and other constraints on $\left\{\alpha_{k}\right\}_{1}^{n}$ are added such that the reprepresentation of x_{n} is itself. Then $\left\{x_{n}\right\}^{\infty}$ is the only such sequence.

Proof. Assume the sequences $\left\{\mathrm{x}_{\mathrm{n}}\right\}_{1}^{{ }^{\infty} 1}$ and $\left\{\mathrm{y}_{\mathrm{n}}\right\}_{1}^{\infty}$ both satisfy the hypotheses, where

$$
\left\{\mathrm{x}_{\mathrm{n}}\right\}_{1}^{\mathrm{N}}=\left\{\mathrm{y}_{\mathrm{n}}\right\}_{1}^{\mathrm{N}}
$$

and $\mathrm{y}_{\mathrm{n}+1} \leq \mathrm{x}_{\mathrm{N}+1}$. Then $\mathrm{y}_{\mathrm{N}+1}$ has a unique representation as a sum of numbers x_{n}, each of which in turn has a unique representation as a sum of numbers y_{n}, where $\mathrm{n} \leq \mathrm{N}$. On the other hand, $\mathrm{y}_{\mathrm{N}+1}$ obviously represents itself and, thus, $\mathrm{y}_{\mathrm{N}+1}$ has two representations in terms of numbers y_{n}. This contradicts the uniqueness of representation, and we conclude that

$$
\left\{\mathrm{x}_{\mathrm{n}}\right\}_{1}^{\infty}=\left\{\mathrm{y}_{\mathrm{n}}\right\}_{1}^{\infty}
$$

Theorem 4 does not include the converse of the following generalization of Zeckendorf's theorem.

Theorem (Brown [2]). Every natural number N has a unique representation in the form of [Continued on page 111.]

