
GENERALIZATIONS OF ZECKENDORFS THEOREM 
TilVIOTHY J. KELLER 

Student, Harvey Mudd College, Claremont, California 91711 

The Fibonacci numbers F are defined by the recurrence relation 
n J 

Fi = F2 = 1 , 

F = F - + F 0 (n > 2) . 
n n-1 n-2 

Every natural number has a representation as a sum of distinct Fibonacci 
numbers, but such representations are not in general unique, When con-
straints are added to make such representations unique, the result is 
Zeekendorfs theorem [1], [5], Statements of Zeckendorffs theorem and its 
converse follow.CAlpha i s an integer . , ) 

Theorem. (Zeckendorf). Every natural number N has a unique rep-
resentation in the form 

n 
N = Ew • 

where 0 < a < 1 and if a = 1, then a = 0. 
Theorem. (Converse of Zeckendorfs Theorem) ([1], [3]). Let 

{ x f 

be a monotone sequence of distinct natural numbers such that every natural 
number N has a unique representation in the form 

n 
N = E*k x k • 

i 

where 0 < <x < 1 and if ca, ^ = 1» then a, = 09 Then 
95 
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{x f = {F }°° . L n1! L nJ
2 

There are generalizations of Zeckendorfs theorem for every mono-
r i°° 

tone sequence {x } of distinct natural numbers for which x± = 1. The fol-
lowing theorem is the first of many such generalizations. 

Theorem 1. Let the numbers x be defined by the recurrence relation 
n J 

xt = 1, x2 = a, 

x = m-i x . + m? x 0 fn > 2) , 
n 1 n-1 L n-2 s ' ' 

where mj > 0, m2 > 0, and a > 1. Then every natural number N has a 
unique representation in the form 

N = 2>k*k 

where a >: 0 and if a, ^ ml5 or, . = m4 for 1 < i < p. 

i) and p is odd9 then a, < m2 ; 
ii) p is even, and k ^ 1, then a, < mA ; 

iii) p is even, and k = 1, then at < a. 

The special case mt = m2 = 1, a = 2 is Zeckendorfs theorem, and 
the case m2 = 1, a = mA is a generalization proved by Hoggatt.(5ee p»89) 

Proof. We prove the existence of a representation by induction on N. 
For N < x 2 , we have N = Nxl9 Take N ^ x2 and assume representability 
for 1, 2, • • • , N - 1 . Since jx } is a monotone sequence of distinct nat-
ural numbers, any natural number lies between some pair of successive ele-
ments of {x } . More explicitly, there is a unique n ^ 2 such that x < N 
^ x -. First let N < mixn. There are unique integers m and r such 
that 

N = mx + r , n 
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where 0 < m < mt and 0 < r < x . If r = 0, then N = mx , whereas 
if r > 0, then the induction hypothesis shows that r is repre sen table. Thus 
N is representable* Now let N ^ m^x . Since 

x ,- = m-x + m0x -
n+1 I n 2 n-1 

for n ^ 23 there are unique integers m and r such that 

N = m.x + m x - + r , 1 n n-1 

where 0 ̂  m < m2 and O ^ r ^ x -. If r = 0, then 
L n-1 

N = m-x + mx . , 
1 n n-1 

whereas if r > 0S then r is representable. Thus N is representable. 
Now use the induction principle. 

To prove the uniqueness of this representation, it is sufficient to prove 
that x is greater than the maximum admissible sum of numbers less than 

n & 

x according to constraints (i)-(iii). We prove this by induction on n. For 
n = 1, this is obviously true. Take n ^ 1 and assume that the sufficient 
condition is true for 1, 29 • • - , n - 1 . From 

n n n-1 

E KX2i-2 + ( m 2 " 1 ) x2i-3> = EX2i-l " E*2i-1 = X2n-1 " *' 

n n n-1 

E { m l X 2 i - l + { m2 " 1 ) x2i-2> = E x2i " E x 2 i = x 2 n - a , 

we obtain the identities 
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n 

x2n-l = L Hx2i-2 + ( m 2 - 1)x2i-3> + X ' 
(1) 2 

n 
x2n = 2 HX2i-l + (m2 " 1 ) x2i-2} + ( a " 1 ) x l + 1 ' 

The induction hypothesis together with (1) shows that x is g r e a t e r than the 

maximum admiss ib le sum of number s l e s s than x . Now use the induction 

pr inc ip le . 

The 

fined by the r e c u r r e n c e re la t ion 

Theorem 1 can be extended to the case where the n u m b e r s x a r e de-
n 

Xi = 1 , x n = an(2 <= n < q) , 

q 
X n = E m k V k fe - q) , 

where m* "> 05 m, ̂  0 for 1 < k < q, m -*- 0, and 1 < a < a ,n for 1 k M? q n n+1 
1 < n ̂  q. Eve ry na tura l number N has a unique represen ta t ion in the form 

N = S ai-Xi 
k k 9 

1 

where a. ^ 0 and o ther cons t ra in t s s im i l a r to those in T h e o r e m 1 a r e added. k 
F o r example , if or . ,- = m. for 1 ^ k < p < q, then a _ < m . If F n-k+1 k F MJ n-p+1 p 
p = q. then a , . < m . These cons t ra in t s mus t be modified to fit the F MJ n-q+1 q 
initial conditions a . The proof of this extension follows that of Theo rem 1 

and uses the identity 
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n - 1 

q n - r 

q-1 n 
= 1L* mi y ^ x • j + (m -1) y^ x . 

* - ^ k JLJI qi-r-k q L*°*d q i -

a - 1 q-r 
q-r-1 J q-r-1 

a q-r 
fa -11 q-r 
Laq-r- l . 

a 
q-r-

a , -1 q-r-1 

2 q-r-2 \̂  q~r [aq-r-lJ ^ ^ / 
xt + 1 

q - r - 1 J 

(0 < r < q) 

Sta tements of two specia l c a s e s and the proof of the second one follow. 

Theo rem. (Daykin [3]). Let the n u m b e r s x be defined by the r e c u r -

rence re la t ion 

x n = n ( l < n < q) 5 

X = X ., + X 
n n - 1 n -q 

(n > q) . 

Then eve ry na tu ra l number N has a unique represen ta t ion in the form 

N = Eakx
k> 

where 0 ^ a, ^ 1 and if a , i = 1> then a. ,. = 0 for 0 ^ i < q - 1 . 
k k+q-1 k+i M 

T h e o r e m 2. Let the number s x be defined by the r e c u r r e n c e re la t ion 

xn = (m + l / ' V < n < q), 

x = m I P x , (n > q) 
n A»J n -k M 

Then eve ry na tura l number N h a s a unique represen ta t ion in the form 

N = J>, 
i 

k x k ' 
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where 0 ^ a. ^ m and if a. ,. = m for 1 < i < q, then a. < m. 
k k+i M' k 

Proof. Following the proof of Theorem 1, we prove the exis tence of a 

r ep resen ta t ion by induction on N. F o r N ^ x , we have 

q-1 

1 

where 0 < a. < m. Take N ^ x and a s s u m e represen tab i l i ty for 1, 2, 

• • • , N - 1. The re i s a unique n ^ q such that x ^ N < x - . Since 

q-1 

x ~~ m / x 
n+1 La n -k 

0 

for n ^ q, the re a r e unique in t ege r s p , m T , and r such that 

p - 1 
N = m j> x . + mTx + r , JLa n -k n - p 

0 

where 0 < p < q, 0 < mT ^ m , and 0 < r < x . If r = 0, then 
r 4J > n _ p 

p - 1 
""" I ~r ill .A. 

k n-p 
N = m / ^ x , + mTx 

0 

w h e r e a s if r ^ 0, then r i s r ep re sen tab l e . Thus N i s r ep resen tab le . 
Now use the induction pr inc ip le . 

To prove the uniqueness of this r ep resen ta t ion , we prove that x i s 
g r e a t e r than the max imum admiss ib le sum of number s l e s s than x a c c o r d -
ing to the cons t ra in t s by induction on n. F o r 1 < n ^ q, we have 

n - 1 n -1 
m # X ) x k = m E (m + 1)k"1 = (m + 1)11"1 " X ^ (m + 1)n_1 = x n ' 

1 1 



1972] GENERALIZATIONS OF ZECKENDORF'S THEOREM 101 

Take n •/* q and assume that the sufficient condition is true for n - q. Then 

x = m n E x . + (m - l)x + x , n-k n-q n-

The induction hypothesis shows that x is greater than the maximum admis-
sible sum of numbers less than x . Now use the induction principle. 

Zeckendorf s theorem can be further generalized to cases where the 
numbers x are defined by recurrence relations with negative coefficients. 

Theorem 3. Let the numbers x be defined by the recurrence relation 
n J 

xt = 1, x2 = a5 

x = m-x - - m0x 0 (n > 2) , 
n 1 n-1 2 n-2 N 

where 0 < m2
 < m^ and a > m2. Then every natural number N has a 

unique representation in the form 

n 
N = E*kxk 

where 0 < a, < n^ for k > 1, 0 < at < a9 and if ^ k + D + 1 = m i - !> 

\ + i = mi - m2 - 1 

for 1 < i < p 3 and 

(i) k > 1, then a. < m-j_ - m2 ; 
(ii) k = 1, then ĉ  < a - m2 . 

The proof, which will not be given, follows that of Theorem 1 and uses 
the identity 
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n-2 
x n = (mt - l )x n _ 1 + (mt - m2 - 1) ^ x. + (a - m2 - l)xt + 1. 

2 

The converse of Zeckendorf's theorem can be generalized to include as 
special cases the converses of the generalizations of Zeckendorf's theorem 
given so far. 

r i°° 
Theorem 4. Let {x } be a monotone sequence of distinct natural 

numbers such that every natural number N has a unique representation in 
the form 

N = I X xk 

where a, ^ 0 and other constraints on {<\} are added such that the rep-
representation of x is itself. Then {xj- is the only such sequence. 

n r V r i00 

Proof. Assume the sequences {x } and {y } both satisfy the hy-
potheses, where 

{x r = {y }iN 
L nJ

A
 lJnJi 

and y - ^ X N+1 * T n e n 3^+1 ^ a s a u n iQ u e representation as a sum of num-
bers x , each of which in turn has a unique representation as a sum of num-
bers y , where n ^ N. On the other hand, y N - obviously represents it-
self and, thus, y N + 1 has two representations in terms of numbers y . This 
contradicts the uniqueness of representation, and we conclude that 

w : - <*£ 
Theorem 4 does not include the converse of the following generalization 

of Z ec kendo rf 's theorem. 
Theorem (Brown [2]). Every natural number N has a unique repre-

sentation in the form of 
[Continued on page 111. ] 


