GENERALIZATIONS OF ZECKENDORF'S THEOREM

TIMOTHY J. KELLER Student, Harvey Mudd College, Claremont, California 91711

The Fibonacci numbers F_n are defined by the recurrence relation

$$F_1 = F_2 = 1 ,$$

$$F_n = F_{n-1} + F_{n-2} \qquad (n > 2) .$$

Every natural number has a representation as a sum of distinct Fibonacci numbers, but such representations are not in general unique. When constraints are added to make such representations unique, the result is Zeckendorf's theorem [1], [5]. Statements of Zeckendorf's theorem and its converse follow.(Alpha is an integer.)

<u>Theorem</u>. (Zeckendorf). Every natural number N has a unique representation in the form

$$N = \sum_{k=1}^{n} \alpha_{k} F_{k} ,$$

where $0 \le \alpha_k \le 1$ and if $\alpha_{k+1} = 1$, then $\alpha_k = 0$. Theorem. (Converse of Zeckendorf's Theorem) ([1], [3]). Let

$$\left\{ x_{n}^{}\right\} _{i}^{\infty}$$

be a monotone sequence of distinct natural numbers such that every natural number $\,N\,$ has a unique representation in the form

$$N = \sum_{1}^{n} \alpha_k x_k ,$$

where $0 \le \alpha_k \le 1$ and if $\alpha_{k+1} = 1$, then $\alpha_k = 0$. Then 95

GENERALIZATIONS OF ZECKENDORF'S THEOREM

Jan.

$$\left\{\mathbf{x}_{n}\right\}_{1}^{\infty} = \left\{\mathbf{F}_{n}\right\}_{2}^{\infty}$$

There are generalizations of Zeckendorf's theorem for every monotone sequence $\{x_n\}_1^{\infty}$ of distinct natural numbers for which $x_1 = 1$. The following theorem is the first of many such generalizations.

<u>Theorem 1.</u> Let the numbers x_n be defined by the recurrence relation

$$x_1 = 1, \quad x_2 = a,$$

 $x_n = m_1 x_{n-1} + m_2 x_{n-2} \quad (n > 2),$

where $m_1 > 0$, $m_2 > 0$, and a > 1. Then every natural number N has a unique representation in the form

$$N = \sum_{1}^{n} \alpha_k x_k ,$$

where $\alpha_k \ge 0$ and if $\alpha_{k+p+1} \ne m_i$, $\alpha_{k+i} = m_i$ for $1 \le i \le p$.

- i) and p is odd, then $\alpha_k < m_2$;
- ii) p is even, and k > 1, then $\alpha_k \leq m_1\;;$
- iii) p is even, and k = 1, then $\alpha_1 < a$.

The special case $m_1 = m_2 = 1$, a = 2 is Zeckendorf's theorem, and the case $m_2 = 1$, $a = m_1$ is a generalization proved by Hoggatt. (See p.89)

<u>Proof.</u> We prove the existence of a representation by induction on N. For $N < x_2$, we have $N = Nx_1$. Take $N \ge x_2$ and assume representability for 1, 2, \cdots , N - 1. Since $\{x_n\}_1^{\infty}$ is a monotone sequence of distinct natural numbers, any natural number lies between some pair of successive elements of $\{x_n\}_1^{\infty}$. More explicitly, there is a unique $n \ge 2$ such that $x_n \le N$ $< x_{n+1}$. First let $N < m_1 x_n$. There are unique integers m and r such that

$$N = mx_n + r$$

where $0 < m < m_1$ and $0 \le r < x_n$. If r = 0, then $N = mx_n$, whereas if r > 0, then the induction hypothesis shows that r is representable. Thus N is representable. Now let $N \ge m_1 x_n$. Since

$$x_{n+1} = m_1 x_n + m_2 x_{n-1}$$

for $n \ge 2$, there are unique integers m and r such that

$$N = m_1 x_n + m x_{n-1} + r$$
,

where $0 \le m < m_2$ and $0 \le r < x_{n-1}$. If r = 0, then

$$N = m_1 x_n + m x_{n-1}$$
,

whereas if r > 0, then r is representable. Thus N is representable. Now use the induction principle.

To prove the uniqueness of this representation, it is sufficient to prove that x_n is greater than the maximum admissible sum of numbers less than x_n according to constraints (i)-(iii). We prove this by induction on n. For n = 1, this is obviously true. Take n > 1 and assume that the sufficient condition is true for 1, 2, ..., n - 1. From

$$\sum_{2}^{n} \{m_{1}x_{2i-2} + (m_{2} - 1)x_{2i-3}\} = \sum_{2}^{n} x_{2i-1} - \sum_{1}^{n-1} x_{2i-1} = x_{2n-1} - 1,$$

$$\sum_{2}^{n} \{m_{1}x_{2i-1} + (m_{2} - 1)x_{2i-2}\} = \sum_{2}^{n} x_{2i} - \sum_{1}^{n-1} x_{2i} = x_{2n} - a,$$

we obtain the identities

$$x_{2n-1} = \sum_{2}^{n} \{m_1 x_{2i-2} + (m_2 - 1) x_{2i-3}\} + 1,$$

$$x_{2n} = \sum_{2}^{n} \{m_1 x_{2i-1} + (m_2 - 1) x_{2i-2}\} + (a - 1) x_1 + 1$$

(1)

2

The induction hypothesis together with (1) shows that
$$x_n$$
 is greater than the maximum admissible sum of numbers less than x_n . Now use the induction principle.

Theorem 1 can be extended to the case where the numbers x_n are defined by the recurrence relation

where $m_1 > 0$, $m_k \ge 0$ for $1 \le k \le q$, $m_q \ge 0$, and $1 \le a_n \le a_{n+1}$ for $1 \le n \le q$. Every natural number N has a unique representation in the form

$$N = \sum_{1}^{n} \alpha_{k} x_{k} ,$$

where $\alpha_{\underline{k}} \geq 0\,$ and other constraints similar to those in Theorem 1 are added. For example, if $\alpha_{n-k+1} = m_k$ for $1 \le k \le p \le q$, then $\alpha_{n-p+1} \le m_p$. If p = q, then $\alpha_{n-q+1} < m_q$. These constraints must be modified to fit the initial conditions a_n. The proof of this extension follows that of Theorem 1 and uses the identity

1972]

$$\begin{aligned} \mathbf{x}_{qn-r} &= \sum_{1}^{q-1} \mathbf{m}_{k} \sum_{2}^{n} \mathbf{x}_{qi-r-k} + (\mathbf{m}_{q} - 1) \sum_{1}^{n-1} \mathbf{x}_{qi-r} + \left[\frac{\mathbf{a}_{q-r} - 1}{\mathbf{a}_{q-r-1}} \right] \mathbf{x}_{q-r-1} \\ &+ \left[\frac{\mathbf{a}_{q-r} - \left[\frac{\mathbf{a}_{q-r} - 1}{\mathbf{a}_{q-r-1}} \right] \mathbf{a}_{q-r-1} - 1}{\mathbf{a}_{q-r-2}} \right] \mathbf{x}_{q-r-2} + \dots + \left(\mathbf{a}_{q-r} - \left[\frac{\mathbf{a}_{q-r} - 1}{\mathbf{a}_{q-r-1}} \right] \mathbf{a}_{q-r-1} - \dots - 1 \right) \\ &\cdot \mathbf{x}_{1} + 1 \qquad (0 \le r < q) \quad . \end{aligned}$$

Statements of two special cases and the proof of the second one follow.

<u>Theorem</u>. (Daykin [3]). Let the numbers x_n be defined by the recurrence relation

$$x_n = n(1 \le n \le q)$$
,
 $x_n = x_{n-1} + x_{n-q}$ (n > q).

Then every natural number N has a unique representation in the form

$$N = \sum_{1}^{n} \alpha_{k} x_{k},$$

where $0 \le \alpha_k \le 1$ and if $\alpha_{k+q-1} = 1$, then $\alpha_{k+i} = 0$ for $0 \le i \le q-1$. <u>Theorem 2</u>. Let the numbers x_n be defined by the recurrence relation

$$x_n = (m + 1)^{n-1} (1 \le n \le q),$$

 $x_n = m \sum_{1}^{q} x_{n-k} \qquad (n > q).$

Then every natural number $\,N\,$ has a unique representation in the form

$$N = \sum_{1}^{n} \alpha_k x_k ,$$

where $0 \le \alpha_k \le m$ and if $\alpha_{k+i} = m$ for $1 \le i \le q$, then $\alpha_k \le m$.

<u>Proof.</u> Following the proof of Theorem 1, we prove the existence of a representation by induction on N. For N $^<$ x $_{_{\rm C}}$, we have

$$N = \sum_{1}^{q-1} \alpha_k x_k ,$$

where $0 \le \alpha_k \le m$. Take $N \ge x_q$ and assume representability for 1, 2, \cdots , N - 1. There is a unique $n \ge q$ such that $x_n \le N < x_{n+1}$. Since

$$x_{n+1} = m \sum_{0}^{q-1} x_{n-k}$$

for $n \ge q$, there are unique integers p, m', and r such that

$$N = m \sum_{0}^{p-1} x_{n-k} + m' x_{n-p} + r ,$$

where $0 \le p < q$, $0 \le m' < m$, and $0 \le r < x_{n-p}$. If r = 0, then

$$N = m \sum_{0}^{p-1} x_{n-k} + m' x_{n-p} ,$$

whereas if r > 0, then r is representable. Thus N is representable. Now use the induction principle.

To prove the uniqueness of this representation, we prove that x_n is greater than the maximum admissible sum of numbers less than x_n according to the constraints by induction on n. For $1 \leq n \leq q$, we have

$$m_{\ell} \sum_{1}^{n-1} x_{k} = m \sum_{1}^{n-1} (m + 1)^{k-1} = (m + 1)^{n-1} - 1 < (m + 1)^{n-1} = x_{n}.$$

Take $n \ge q$ and assume that the sufficient condition is true for n - q. Then

$$x_n = m \sum_{1}^{q-1} x_{n-k} + (m - 1)x_{n-q} + x_{n-q}$$
.

The induction hypothesis shows that x_n is greater than the maximum admissible sum of numbers less than x_n . Now use the induction principle.

Zeckendorf's theorem can be further generalized to cases where the numbers x_n are defined by recurrence relations with negative coefficients. <u>Theorem 3.</u> Let the numbers x_n be defined by the recurrence relation

$$x_1 = 1$$
, $x_2 = a$,
 $x_n = m_1 x_{n-1} - m_2 x_{n-2}$ (n > 2),

where $0 \le m_2 \le m_1$ and $a \ge m_2$. Then every natural number N has a unique representation in the form

$$N = \sum_{1}^{n} \alpha_k x_k ,$$

where $0 \le \alpha_k \le m_1$ for $k \ge 1$, $0 \le \alpha_1 \le a$, and if $\alpha_{k+p+1} = m_1 - 1$,

$$\alpha_{k+i} = m_1 - m_2 - 1$$

for $1 \le i \le p$, and

(i) k $^{>}$ 1, then $\alpha_{\rm k}^{~<~}$ m_1 - m_2; (ii) k = 1, then $\alpha_{\rm l}^{~<~}$ a - m_2.

The proof, which will not be given, follows that of Theorem 1 and uses the identity

$$x_n = (m_1 - 1)x_{n-1} + (m_1 - m_2 - 1)\sum_{2}^{n-2} x_i + (a - m_2 - 1)x_1 + 1.$$

The converse of Zeckendorf's theorem can be generalized to include as special cases the converses of the generalizations of Zeckendorf's theorem given so far.

<u>Theorem 4.</u> Let $\{x_n\}_{i=1}^{\infty}$ be a monotone sequence of distinct natural numbers such that every natural number N has a unique representation in the form

$$N = \sum_{1}^{n} \alpha_{k} x_{k}$$

where $\alpha_k \ge 0$ and other constraints on $\{\alpha_k\}_1^n$ are added such that the representation of x_n is itself. Then $\{x_n\}_1^{\infty}$ is the only such sequence. <u>Proof.</u> Assume the sequences $\{x_n\}_1^{\infty^1}$ and $\{y_n\}_1^{\infty}$ both satisfy the hy-

potheses, where

$$\left\{\mathbf{x}_{n}\right\}_{1}^{N} = \left\{\mathbf{y}_{n}\right\}_{1}^{N}$$

and $y_{n+1} \leq x_{N+1}$. Then y_{N+1} has a unique representation as a sum of numbers x_n , each of which in turn has a unique representation as a sum of numbers y_n , where $n \le N$. On the other hand, y_{N+1} obviously represents itself and, thus, y_{N+1} has two representations in terms of numbers y_n . This contradicts the uniqueness of representation, and we conclude that

$$\{x_n\}_1^{\infty} = \{y_n\}_1^{\infty}$$
.

Theorem 4 does not include the converse of the following generalization of Zeckendorf's theorem.

Theorem (Brown [2]). Every natural number N has a unique representation in the form of [Continued on page 111.]