As a result of Theorem 9 we have the following theorem, which may be called a Non-Four-Square Theorem.

Theorem 10. There does not exist a finite number n such that every positive integer can be represented as a sum of at most n Fibonaccisquares.

6. VALUES OF m SUCH THAT $R(k) \neq m$

Using Lemma 7 and mathematical induction, it is possible to prove

$$
R(k) \neq 5, \quad R(k) \neq 7, \quad R(k) \neq 13
$$

for any positive integer k. It is suggested that there are an infinite number of integers m such that $R(k) \neq m$ for any positive integer k.

Further expansion of these ideas is contained in [3].

REFERENCES

1. J. L. Brown, Jr., "Note on Complete Sequences of Integers," American Mathematical Monthly, Vol. 68 (1961), pp. 557-560.
2. David A. Klarner, "Representations of N as a Sum of Distinct Elements from Special Sequences," Fibonacci Quarterly, Vol. 4 (1966), pp. 289306.
3. Roger O'Connell, "Representations of Integers as Sums of Fibonacci Squares," unpublished Master's Thesis, January 1970, San Jose State College, San Jose, California.

[Continued from page 102.]

$$
N=\sum_{2}^{n} \alpha_{k} F_{k}
$$

where $0 \leq \alpha_{k} \leq 1$ and if $\alpha_{k+1}=0$, then $\alpha_{k}=1$.
Zeckendorf's theorem provides the representation of N in terms of the minimum number of distinct Fibonacci numbers, and Brown's theorem provides the representation of N in terms of the maximum number of distinct Fibonacci numbers.

REFERENCES

1. J. L. Brown, Jr., "Zeckendorf's Theorem and Some Applications," Fibonacci Quarterly, 2 (1964), pp. 162-168.
2. J. L. Brown, Jr., "A New Characterization of the Fibonacci Numbers," Fibonacci Quarterly, 3 (1965), pp. 1-8.
3. D. E. Daykin, "Representation of Natural Numbers as Sums of Generalized Fibonacci Numbers," J. London Math. Soc., 35 (1960), pp. 143-160.
4. David A. Klarner, "Representations of N as a Sum of Distinct Elements from Special Sequences," Fibonacci Quarterly, 4 (1966), pp. 289-306.
5. C. G. Lekkerkerker, "Representation of Natural Numbers as a Sum of Fibonacci Numbers," Simon Stevin, 29 (1952), pp. 190-195.

[Continued from page 70.]

REFERENCES

1. L. Carlitz, "Fibonacci Representations," Fibonacci Quarterly, Vol. 6 (1968), pp. 193-220.
2. L. Carlitz and Richard Scoville, "Fibonacci Representations," Fibonacci Quarterly, Vol. 10 (1972), pp. 1-28.
3. S. P. LaBarbera, "Lucas Numbers: Recall, Reincarnation, Representation, " San Jose State College Master's Thesis, July 1971.
[Continued from page 93.]
The Number of Representations $S(n)$ of Integers as Sums of Distinct
Elements of the Abbreviated Fibonacci Sequence 54-57
The Number of Representations $Q(n)$ of Integers as Sums of the Lucas Sequence. 58-61
List of Integers Not Representable by the Truncated Fibonacci
Sequence $2,3,5,8, \ldots$. 62-64
Integers Not Representable by the Truncated Fibonacci Sequence . . 65
Integers Not Representable by the Truncated Quadranacci Sequence . 66
Integers Not Representable by the Sequence 1, 3, 5, 11, \cdots

Edited and compiled by Brother Alfred Brousseau
$\rightarrow \infty$
