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A s a result of Theorem 9 we have the following theorem, which may be 
called a Non-Four-Square Theorem. 

Theorem 10. There does not exist a finite number n such that every 
positive integer can be represented as a sum of at most n Fibonacci squares. 

69 VALUES OF m SUCH THAT R(k) f m 

Using Lemma 7 and mathematical induction, it is possible to prove 

R(k) f 5, E(k) ± 7, R(k) f 13 

for any positive integer k. It is suggested that there are an infinite number 
of integers m such that R(k) f- m for any positive integer k. 

Further expansion of these ideas is contained in [3], 
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where 0 ^ a. ^ 1 and if a ,- = 0, then a, - 1. k k+1 k 
Zeckendorfs theorem provides the representation of N in terms of the 

minimum number of distinct Fibonacci numbers^ and Brownfs theorem pro-
vides the representation of N in terms of the maximum number of distinct 
Fibonacci numbers. 
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