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The following development, to the best of the author's knowledge, is 
new. At any rate, it is original and very interestinga We begin by defining 
the function 

(1) f(x) = 1/(1 - x) sjTTx . 

This may be thought of as the generating function of a power series in 
x, whose coefficients we are to determine. Thus, we seek the values of the 
coefficients A. , where k 

(2) ^y = 2 \ x i k 
A, X 

k 
k=0 

That this representation is valid may be seen by observing that f(x) is 
-1 -̂  

expressible as the product of the two functions (1 - x) and (1 + x) 2, each 
of which is of the same form as (2).' In fact, 

k
 k (3) (1 - X)"1 = £ x k , and (1 + x ) ^ = ^(fjU) * 

k=0 k=0X 

Therefore, it follows that 

(4) Ak 

1=0 

From the foregoing expression for A, , it is evident that 

169 
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\ - v i • (?) (4) • An = 1 

Recurs ion (5) may be expressed in the form 

(6) A = A l k - 1 / 2 k - 2 \ / l \ k _ 1 

W A k A k - 1 2k \ k - l ) \ 4 j 

If, in r ecu r s ion (6), we multiply throughout by (2k)/2k - 1, and if, in 

r ecu r s ion (5), we rep lace the subscr ip t k by k - 1, we may add the two r e -

su l t s , thereby el iminat ing the factor ial t e rm. Upon simplif icat ion, this p r o -

c e s s yie lds the following r e c u r s i o n , which involves th ree success ive values 

of A, : 

(7) 2 k A k = A k _ x + (2k - l ) A k _ 2 . 

This i s valid for k = 2, 3, 4 , • • • , and if we affix the values A0 = 1 and 

Aj = \ , we have fully cha rac t e r i zed the coefficients A, . 

We shall now define the sequence of number s B, , such that for each 

non-negative in teger k, 

(8) B k = 2 k . k! . A k . 

Substituting this definition in r ecu r s ion (7), 

2 k ' B k „ B k - 1 , ( 2 k - 1 ) B k - 2 m 

2 k • k! 2 k " 1 (k - 1)1 2 k " 2 (k - 2)! 

k -1 If we mult iply this r e su l t throughout by 2 • (k - 1)! , we obtain: 

(9) B k = B k _ x + (2k - l)(2k - 2 ) B k _ 2 . 

Recurs ion (9), plus the initial conditions B0 = BA = 1, completely 

cha rac t e r i z e the coefficients B. . F u r t h e r m o r e , from (9), it i s evident that 

all the B, Ts a r e in tegers . Upon application of (9), for the f i r s t few values 

of k, we obtain the following va lues : 
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B0 = B! = 1, B2 = 7, B3 = 27 , 

B4 = 321, B5 = 2,265, B6 = 37,575, B7 = 390,915 , 

etc. We may summarize the results thus far derived in the following form: 

_ k 
(10) f(2x) = 1/(1 - 2x) sjl + 2x = 2 J \ £T > 

k=0 

where 

B k = 2 k . k '£(")# 
What struck the author as interesting was the fact that the sequence of 

numbers B, appears in other power ser ies , derived from generating func-
tions of totally different form from (10). 

Specifically, we will demonstrate that 

(11) 

and 

(12) 

g(x) 

h(x) = 

X 
= e 

= tan 

0 

-v-vi • 

du 

- x2 = 

oo 

= E B k 
k=0 

OO 

E (Bk)2 

k=0 

2k+l 
X 

(2k + 1)! J 

2k+l 
X 

(2k + 1)! 

Let y = g(x). If we differentiate y, as defined in (11), 

x 
x2/2 -x2 ^ x2/2 f -u2 , -x2/2 ^ 

yT = e • e + xe I e du = e + x y 

Differentiating again, we obtain 
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-x 2 /2 , . , - x 2 / 2 , -x 2 /2 , 2 , /i , 2\ 
y" = - x e + xyf + y = -xe + xe + x^y + y = (1 + x*)y. 

Next, we observe that g(x) is an odd function of x. This is demon-
strated by replacing x with -x and the dummy variable u with -u in (11), 
which yields g(-x) = -g(x). 

Therefore, g(x) may be expressed in the form 

£ 2k+l r. x k 
k=0 

Negative powers of x are excluded, for otherwise g(x) would be discontin-
uous at x = 0, along with the first and higher order derivatives. However, 
it is readily seen that g(0) = 0 , gT(0) = 1, and g!(0) = 0. 

We will use these conditions to develop a recursion involving the coef-
ficients r, . If we differentiate the series expression for g(x), 

as) g'(x) = j ^ ( 2 k + 1 ) \ x 2 k ' gn^x) = X2k(2k + i ) rkx 2 k"1 • 
k=0 k=l 

We use the differential equation yfT = (1 +x2)y derived above, which 
becomes transformed to the following relationship: 

(14) 2 < * + 2)(2k + 3 ) r k + 1 x 2 k + 1 = £ r k x 2 k + 1
 + £ r ^ * 2 " * 1 

k=0 k=0 k=l 

If we equate the coefficients of similar powers of x, we obtain: 

(15) r0 = 6r l 5 (2k + 2)(2k + 3) r k + 1 = rR + r k _ r if k = 1 ,2 ,3 ,— 

Using the condition gf(0) = 1 , we see that r0 = 1, and therefore, 

1 
r* = 6 * 



1972] FROM VARIOUS OPERATING FUNCTIONS 173 

We now define the sequence of number s R, such that , for eve ry non-negat ive 

in teger k, R^ = (2k + 1)! r, . Substituting this definition in r ecu r s ion (15), 

and multiplying throughout by (2k + l)f„, we obtain: 

(16) R k + 1 = R k + 2k(2k + l ) R k ; also5 R0 = Rt = 1 . 

But if we rep lace k by k - 1 in (16), we obtain p rec i s e ly the same r e -

curs ion a s (9). Since the init ial values of R, a r e identical to those of B, , 

we conclude that R, = B, for all va lues of k, and the validi ty of (11) is 

es tabl ished, 

The proof of (12) i s s i m i l a r , though somewhat m o r e complicated. We 

begin by squar ing both s ides of (9), and solving for B, _1 B, _~ : 

_ B*. - B2
k_± - (2k - l)2(2k - 2 ) 2 B | ._ 2 

( 1 7 ) B k - l B k - 2 = — ~ ~ " 2 ( 2 k - l)(2k ^W " 

Next, we may mult iply (9) throughout by B. - , obtaining 

( 1 8 ) B k B k - l = B k - 1 + ( 2 k " 1 ) ( 2 k " 2 ) B k - l B k - 2 • 

If, in (18), we subst i tute the express ion der ived in (17) for B ^ _ 1 B, ~, 

and the cor responding express ion for B, B, - obtained by inc reas ing the 

subsc r ip t from k - 1 to k, we a r r i v e at a r ecu r s ion which involves only the 

s q u a r e s of success ive B. fs* Upon simplif icat ion, this becomes 

B k+1 = ( 4 k 2 + 2 k + 1 ) ( B k + 2 k ( 2 k + 1 ) B k - l ) 

( 1 9 ) - (2k - 2)2(2k - l)22k(2k + D B £ _ 2 . 

Next, we observe that h(x) i s an odd function of x , continuous a t x = 

09 The re fo re , a s before , h(x) may be exp res sed in the form 

2 k̂ 
k=0 

2k+l 
Si X 
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As before, we will develop a recursion involving the s, f s . If we let 
z = h(x)9 as defined in (12), we differentiate as follows: 

+ - * * . , _ (1 - x2)2 • (l + x 2 ) " 1 + x t a n ^ x - (1 - x2)"^ _ (1 - x2) ^ 
Z — ' — ——————— 

1 - X2 1 + X2 1 - X2 

Differentiating again, 

.. _ x(l + x2)(l - x 2 ) " 3 / 2 - 2x(l - x2)"2
 A (1 - x2)(xz' + z) + 2x2z 

(1 + x2)2 (1 - x2)2 

From the first differentiation, 

(1 - X 2 )" 2 = (1 + X2 {' - r^) • 
Substituting this result in the second differentiation, we eliminate all irrational 
functions of x, and upon simplifying the result: 

(20) (1 + x2)(l - x2)2z" + 4x3(x2 - l)z» + (2x4 - 3x2 - 1) z = 0 . 

In the series expression for h(x), there will be no loss in generality 
if we make the substitution s, = S, + (2k + 1)1. Then 

V \ J W V **V 

% x 2 k + 1 x 2 k x 2 k + 1 

Z-J sk (2k + i ) i ' zf = zJ sk Wn 5 z" = S sk+i WTTy.' 
k=0 k=0 k=0 

Each term in differential equation (20) may be expressed in series form 
by means of the latter expressions. Using the method of equating coefficients 
(the development is omitted here, in the interest of brevity), we arrive at the 
following recursion: 

(21) S k + 1 = (4k2 + 2k + l )Sk + 2k(2k + l)(4k2 + 2k + D S ^ 
- 2k(2k + l)(2k - l)2(2k - 2)2Sk_2 
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valid for k = 0, 1, 2, 3, 8 0 e„ But this recursion is of the same form as 
(19) 9 and becomes identical to it if S. = B? for all non-negative values of k. 
It remains to show that such is the case for the initial values, where k = 0 
and 1. We observe that h(0) = 0, and from the first-order differential equa-
tion, h!(0) = 1. But we see from the series expression for z? that hT(0) = 
S0 = 1. From (21), we readily obtain the values St = 1, S2 = 49, S3 = 729, 
etc. This establishes the truth of (12). 

We have overlooked the question of convergence in the manipulation of 
the foregoing infinite series* A more rigorous treatment would only have 
served to detract interest from the remarkable properties of these series 
which link them together,, It may be demonstrated, however, that f(x) and 
h(x) are convergent within the interval (-1,1), excluding the end points; 
g(x) converges for all real values of x. 

The purpose of this paper was to demonstrate the validity of (10), (11) 
and (12). Now that this has been accomplished. It would be desirable to de-
duce some properties for the coefficients B. . The remaining portion is de-
voted to the derivation of several such properties and relationships. 

We begin by noting that g(x) and h(x) are expressible as the products 
of two functions, as is the case with f(x). By application of Maclaurin?s 
formula, 

e 
?/« 2k r 2 i 2 k + l 

x 2 / 2 _ ^ x _ , f -u* = v 1 /_i^k * / e ^ d u ^ W ) 1 

— A-f ' J ^ (2k + 1)k! 

k=o 2 ke i k=o 
Multiplying these two series term-by-term, we obtain: 

^ = E k 
k=0 

2k+l c. x 

where 

k 
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But, as we have already shown9 c, = B, + (2k + 1)1. Therefore, we 
are led to an alternate expression for B, : 

k 
(99) T* - ( 2 k + 1 ) l V (k\ (-2^ 
(22) Bk ~ - T k - ~ 2 * I i)(2TTTy • 

z . R. k=:Q / 

In a similar fashion, we may derive an expression for B? by using the 
component functions of h(x): 

tan" 

(1 -

-1 
X 

X 2 ) 

k=0 

4 = -

(-D 

OO 

PA 

. 2k+l k x 
2k + 1 ; 

'ikVx/2)2k 

k=o 

Therefore, 

2k+l a, x k 
k=0 

h(x) = S dk X 

where 

\ - £ -^ » M k Z-* 2k - 2i + 1 02i 
i=0 2 

But, since d, = B? + (2k + l ) t , we are led to the expression: 

(23) Bg. = (-l)k(2k l}' Z-r V i J2k - 2i + 1 
i=0 
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We may also express each B k in the form of a definite integral as 
follows: 

First , we define the polynomial P.(x) by the following summation: 

^ pk<x> = E l-jtywTI 

If we differentiate 9 

£ M>'(i)*2' P^(x) = ^ ' ' - * ' - i - 2 i 

i=0 

But the latter expression is equivalent to the binomial expansion for (1 -x 2 ) . 
Noting that P, (0) = 09 we may integrate and obtain: 

x , 
(25) Pk(x) = J (1 - u2)Kdu 

Next 9 we observe that 

Pk0s/2") = ^ 2 /L/\ i I 2i • + 1 
i=0 X / 

Comparing this with the expression for B, in (22), we obtain: 

(26) Bk -&JJX f ( l - u ^ d u . 

Next, we prove the following property: 
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(27) B, is divisible by -i-222i , where m is the greatest integer in A[k + 1). 
K 2mml 

If we multiply (5) throughout by 2 k! and apply relation (8), we obtain 
the recursion 

(28) B k = 2kBk_x + ( - l ) k - & = 2 k B
k „ i + (-l)k(l»3-5 (2k - 1)) . 

Li K-a 

Recursion (28) may be expressed in the following alternative forms, de-
pending on whether k is even or odd: 

(28a) B 2 m = 4 m B 2 m 4 + 1-3-5 (4m - 1) 

(28b) B
2 m + 1 = (4m + 2 )B 2 m - 1.3-5. . . . . (4m + 1) . 

We may now prove (27) by induction. Let us first assume that (27) is 
true for k = 2m, i .e . , B2 is divisible by 1-3-5 (2m - 1). Then, 
by (28b), B 2 +- is divisible by 1.3-5 (2m + 1). But this is equivalent 
to the assertion of (27), where k = 2m + 1. Now, if we replace m by m + 1 
in (28a), we see that B„ + 2 is also divisible by ls3.5« • • • • (2m + 1). This, 
in turn, is equivalent to the assertion of (27), where k = 2m + 2. This e s -
tablishes the inductive chain. Since (27) is true for k = 0, it is therefore 
true for all values of k. 

The readers are invited to discover any other properties of the sequence 
B, which they feel might be of interest. It is the belief of the author that a 
deeper analysis of this series of numbers, though perhaps not of any lasting 
value, might be a source of recreation for those who derive pleasure from 
such studies. 

APPENDIX 
DERIVATION OF EQUATION (21) 

In addition to the series expressions for the derivatives of h(x), we 
will need the following expressions: 
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OO 

2k+l x2z = E \-i^ + !)(2) m (2k + 1): 
k=l 

^ = E sk_2
(2k + 1)(4) m 

2k+l 

(2k + 1)! 
k=2 

2k-KL 

** = E w* + D ( 3 ) ^ ^ 
k=l 

_ /Rv 2k+l 
c5z» = V s . 0(2k + l ) l 5 ) - ^ k - 2 v " ' (2k + 1)1 

k=2 

_ . , . 2k+l 

k=l 

*4z" = E w 2 k +1)(4) w?ij! 
k=2 

_ (ft. 2k+l 
x6z" = S sk-2<2k + 1)(} wnyr • 

k=3 

(r) In the foregoing, the symbol (2k + 1) r e p r e s e n t s 

(2k + l)(2k)(2k ~ l)(2k - 2) . - (2k + 1 - (r - 1)) = ^ ^ ^ r ) , 

Equation (20) m a y be exp res sed in the following manner : 

(1 - x2 - x4 - x 6 ) z " + (4x5 - 4x3)z ' + (2x4 - 3x2 - l ) z . = 0 .. 
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Substituting the previous exp re s s ions in the l a t t e r equation, we obtain: 

_ x
2 k + 1 ^ -* (2) 2 k + 1 

*-** Sk+1 (2k + 1)! ~ Z J S k ( 2 k + 1] (2k + 1)1' 
k=0 k=l 

2k+l , ... 2k+l 
My) x £ sk_l(2k + i)W jjrTTSi + E W 2 k + 1)( W+TJ! 

k=2 k=3 

,.v 2k+l , , 2k+l 
+ E 4W2 k + «(6) jfcnp. ~ E 4sk-i(2k +1)(} Tsmjr 

k=2 k=l 

V ^ (4) x 2 k + 1 ^ > (2) x 2 k + 1 

+ E 2Sk-2(2k + « W (2TTTP. " E 3Sk-i(2k + X) T^TTJi 
k=2 k=l 

" 2 k + l 

- Es- x k (2k + 1)1 
k=0 

If we equate l ike coefficients, we obtain the following r e c u r s i o n s : 

SA - S0 = 0; S2 - 6Si » 24S 0 - 18S0 » Si = 0; 

S3 - 20 S2 - 120 Si + 480 S0 - 240 Si + 240 S0 - 60 ^ - S2 = 0 ; 

if k = 3 , 4 , 5, • • • , 

S k + 1 - (2k(2k + 1) + l ) S k - 2k(2k + D Q ^ ^ ! 

+ (2k + l ) ( 4 ) ( (2k - 3)(2k - 4) + 4(2k - 3) + 2)SR_2 = 0 , 

where 

Qk = (2k - l )(2k - 2) + 4(2k - 1) + 3 . 

Upon simplif icat ion, these r e s u l t s become: 
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(21) S k + 1 = (4k2 + 2k + l ) S k + 2k(2k + l)(4k2 + 2k + l ) S k _ 1 

- 2k(2k + l)(2k - I)2(2k - 2 ) 2 S k _ 2 , 

balid for k = 0, 1, 2 , 8 o e . 

[Continued from page 168. ] 
FIBONACCI PRIMITIVE ROOTS 

e tc . Of c o u r s e ? that i s (abstractly) the s ame thing we a r e doing in (2), (3)B 

In [ 7 ] , E m m a L e h m e r examines the quadrat ic c h a r a c t e r of 

0 = (1 •+ \ / 5 ) / 2 (modp) . 

If 6 i s a quadrat ic res idue of p , but not a h igher power r e s idue , then all 

quadrat ic r e s idues can be genera ted by addition. In our cons t ruc t ion , 9 i s 

a p r imi t ive root and gene ra t e s the quadrat ic nonres idues a lso . 
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