$$
\begin{gathered}
a=8 x^{2}+4 x k-3 \\
b=48 x^{4}+32 x^{3} k-32 x^{2}-12 x k+4 \\
c=b+1 \\
a+b=\left(4 x^{2}+4 x k-1\right)^{2} \\
b+c=\left(8 x^{2}+4 x k-3\right)^{2}
\end{gathered}
$$

Now $\pm \sqrt{2 \mathrm{x}^{2}-1}$ in integral for $1,5,29,169, \cdots$, a recurrent series that has already been defined. Substituting alternately the positive and negative values of $\pm \sqrt{2 \mathrm{x}^{2}-1}$ in $\mathrm{a}, \mathrm{b}, \mathrm{c}$, we obtain the desired triplets.

Several minor but interesting relationships may be noted in conclusion.
Since

$$
u=x^{2}+(x+y)^{2}
$$

it follows that
$\mathrm{u}=\mathrm{x}^{2}+(\mathrm{x}+\mathrm{k})^{2}=4 \mathrm{x}^{2}+2 \mathrm{xk}-1$
$u=1^{2}+(1+y)^{2}=2 y^{2}+2 y l+1$,
and, since $v=u-1$,

$$
a+b=2 u^{2}-1
$$

and

$$
u=\sqrt{\frac{1}{2}(a+b+1)}
$$

