SUBSEMIGROUPS OF THE ADDITIVE POSITIVE INTEGERS JOHN C. HIGGINS Brigham Young University, Provo, Utah

1. INTRODUCTION

Many of the attempts to obtain representations for commutative and/or Archimedean semigroups involve using the additive positive integers or subsemigroups of the additive positive integers. In this regard note references [1], [3], and [4]. The purpose of this paper is to catalogue the results that are known and to present some new results concerning the homomorphic images of such semigroups.

2. PRELIMINARIES

Let I denote the semigroups of additive positive integers. Lower case Roman letters will always denote elements of I. Subsemigroups of I will be denoted by capital Roman letters between J and Q inclusive. Results followed by a bracketed number and page numbers refer to that entry in the references and may be found there. Results not so identified are original and unpublished.

Theorem 1. ([2] pp. 36-48) Let K be a subsemigroup of I, then

i. There is $k \in I$ such that for $n \ge k$, $n \in K$ or

ii. There is $n \in I$, n > 1 such that n is a factor of all $k \in K$.

<u>Proof.</u> Suppose there exist $k_1, \dots, k_m \in K$ such that the collection (k_1, \dots, k_m) has a greatest common divisor 1. Let K' be the subsemigroup of I generated by $\{k_1, k_2, \dots, k_m\}$ clearly, $K' \subseteq K$. Let $k = 2k_1 \cdot k_2 \cdot \dots \cdot k_m$ and for b > k, since the g.c.d. of (k_1, \dots, k_m) is one we may find integers $\alpha_1, \dots, \alpha_m$ such that $\alpha_1 k_1 + \dots + \alpha_m k_m = b$. (Note: the α_i are not necessarily positive.) We may now find integers q_i and r_i such that

$$\alpha_{i} = q_{i}k_{1} \cdots k_{i-1}k_{i+1} \cdots k_{m} + r_{i},$$

where $0 \leq r_i \leq k_1 \cdots k_{i-1} \cdots k_m$ (i = 2, 3, ..., m). Now let

 $c_1 = \alpha_1 + (q_2 + \cdots + q_m)k_2k_3 \cdots k_m, c_i = r_i, (i = 2, 3, \cdots, m).$

We now have

226

$$b = c_1 k_1 + c_2 k_2 + \cdots + c_m k_m$$
.

We have chosen $c_i \ge 0$ for $i = 2, 3, \dots, m$. But since

$$c_{2}k_{2} + \cdots + c_{m}k_{m} = r_{2}k_{2} + \cdots + r_{m}k_{m} \leq k_{1}k_{2} \cdots k_{m} \leq b$$

clearly $c_1 \ge 0$. Thus every $b \ge k$ may be expressed as a linear combination of $\{k_1, \dots, k_m\}$ where only positive integral coefficients are used.

If every finite sub collection of elements of K have g.c.d. greater than one, then clearly all of K have g.c.d. greater than one.]

Corollary 1. ([2] p. 39). Every K is finitely generated.

It is clear that there are essentially two types of subsemigroups of I:

i. Those that contain all integers greater than some fixed positive integer will be called relatively prime subsemigroups of I.

ii. Any other is a fixed integral multiple of a relatively prime subsemigroup.

<u>Theorem 2.</u> Let K, J be subsemigroups of I. Let the mapping **K** be a homomorphism from K onto J. Then **K** is in fact an isomorphism of K onto J of the type; for $k \in K$. $(k)\mathbf{K} = \gamma k$, where γ is a fixed rational number depending on K and J.

<u>Proof.</u> Since, by Corollary 1, K and J are finitely generated, let (k_1, \dots, k_m) be a generating set of K. Let (j_1, \dots, j_m) be the images in J of (k_1, \dots, k_m) under **K**. Clearly (j_1, \dots, j_m) . Now generate J.

$$(k_i k_1)\mathbf{K} = k_i (k_1)\mathbf{K} = k_i j_1$$

since K preserves positive integral multiples, but we also have

$$(k_{i}k_{1})\mathbf{K} = (k_{i})\mathbf{K}k_{1} = j_{i}k_{1}$$

and

$$k_i j_1 = j_i k_1$$

so that

Clearly for a given subsemigroup K not any rational number γ will do. Note that:

$$j_{i} = \frac{j_{1}}{k_{1}} k_{i}$$
,

but j_i is an integer and, k_1 divides k_i . If the collection (k_1, \dots, k_m) have greatest common divisor equal to one, then clearly γ is an integer. If the collection (k_1, \dots, k_m) have greatest common divisor $n \neq 1$, then $(k_1/n, \dots, k_m/n)$ generates a relatively prime subsemigroup of I, call it K', and K and J are such that

$$K = nK'$$
, $L = \gamma nK'$,

where γn is an integer. We have now shown:

<u>Corollary 2.</u> Let K and J be subsemigroups of I. For J anyhomomorphic image of K, K and J are integral multiples of a relatively prime subsemigroup, K', of I.

3. HOMOMORPHISMS

The results of Section 2 make it clear that no subsemigroup of I has a proper homomorphic image contained in I. Let us now examine the proper homomorphic images of subsemigroups of I.

<u>Lemma 1.</u> Let K be a relatively prime subsemigroup of I. Let \sim be a congruence defined on K and satisfying:

Then, K/\sim is finite.

<u>Proof.</u> Since K is relatively prime there is a least $k \in K$ such that for all $n \ge k$, $n \in K$. Suppose $x \le y$ and at y - x = m. Now,

$$x + k \sim x + k + im$$
, $i = 1, 2, 3, \cdots$

since by induction

$$x + k \sim (x + m + k = y + k)$$

and if $x + k \sim x + k + im$, then

$$x + k \sim x + h + (i + 1)m$$

by using the strong form of induction and adding k + (i)m to both sides of: x ~ x + m. Clearly then, x + m + h + 1 is an upper bound for the order of K/~.]

Lemma 2. For K, k as in Lemma 1, let n be the least positive integer such that: for x, $y \in K$, $x \sim y$ and x - y = n. Then, for any c, $d \in K$, if $c \sim d$, c < d, d - c = m: we have d - c = jn.

<u>Proof.</u> (Let a be the least element of K such that a $\sim a + n$). We may find $k' \in K$ such that c + k' > a + k. Thus by Lemma 1, c + k' is in one of the classes determined by

a + k, a + k + 1, ..., a + k + n - 1.

Thus

$$c + k' = a + k + jn + i,$$

and

$$c + k' + m = a + k + j'n + i'$$

but $c + k' + m \sim c + k'$, and $a + k + j'n + i \sim a + k + jn + i'$, but this gives $a + k + i \sim a + k + i'$. Thus, i = i' since n is the least positive integral difference of equivalent elements of K.]

For finite homomorphic images of subsemigroups of I, call n, as defined in Lemma 2, the <u>period</u> of the congruence.

Lemma 3. Let K, k, n, a be as in Lemma 2. Let be a congruence on K such that for $c \sim d$, $d \geq c$, $d - c \in K$. Then K/~ has exactly n non-singleton classes.

<u>Proof.</u> Let d - c = m. Then by Lemma 2, m = jn. We have $jn \in K$ and for p sufficiently large c + (p)jn > a + k. Thus, $c + (p)jn \sim a + k + i$ for some i; $0 \le i \le n - 1$. But since $jn \in K$, $c + (p)jn \sim c$ for p = 1, 2, 3, Thus $c \sim a + k + i$ and the non-singleton classes may be represented by a + k, a + k + 1, ..., a + k + n - 1.]

If c is an element of a relatively prime K, where $c \sim a + k + i$ (a,k being as in Lemma 2) then if ~ has period n we have: $c \equiv a + ki$ (mod n). This follows immediately from Lemma 2.

Congruences on a relatively prime K which fail to satisfy the conditions of Lemma 3 may be described as follows. There are the n classes represented by a + h, a + h + 1, \cdots , a + h + n - 1; there are any number of singleton classes for elements between a + h and the least element of K. There may be finite non-singleton classes of elements between a + h and the least element of K, but from Lemma 3 no two elements in a finite class may differ by an element of K.

4. SUBSEMIGROUPS OF CYCLIC SEMIGROUPS

In this section we treat subsemigroups of finite cyclic semigroups. Let R be the finite cyclic semigroup of index r and period m. Elements of R will be represented by integers; R will be written additively.

Lemma 1. Let T be the subsemigroup of R generated by the elements t_1, t_2, \dots, t_k . If the greatest common divisor of $\{t_1, t_2, \dots, t_k, m\}$ is one, then T contains the periodic part of R.

<u>Proof.</u> Let t' be the g.c.d. of $\{t_1, t_2, \dots, t_h\}$. By Theorem 1, Section 2, the subsemigroup of I generated by $\{t_1/t', t_2/t', \dots, tk/t'\}$ contains all integers greater than some fixed integer k. But for some p all $q \ge p$ are such that qt' > k. Now let

$$(\mathbf{k} + \mathbf{i})\mathbf{t}^{\mathbf{r}} - \mathbf{r} \equiv \mathbf{m} (\mathbf{k} + \mathbf{j})\mathbf{t}^{\mathbf{r}} - \mathbf{r},$$

then (nj - in)t' = n'm, but t' and m are relatively prime. Thus, m divides nj - in.]

The remainder of the subsemigroup of R generated by $\{t_1, t_2, \dots, t_h\}$ is the intersection in R of the subsemigroup of I generated by the t_i considered as integers. If the g.c.d. of $\{t_1, t_2, \dots, t_k, m\} = p > 1$, then the subsemigroup generated contains m/p elements of the periodic part of R, and can thus be made isomorphic to a subsemigroup of the type described in Lemma 1 by changing the period of R to m/p.

Finally, let K be the subsemigroup of I generated by $\{t_1, t_2, \dots, t_k\}$ considered as integers, where $t_1, t_2, \dots, t_h \in \mathbb{R}$ a finite cyclic semigroup of index r and period m, and the g.c.d. of $\{t_1, t_2, \dots, t_h, m\}$ is one. Let K' = K \cup N, where N is all of I greater than r. Clearly K' is a subsemigroup of I. Let \sim_r be the relation:

x,
$$y \in K'$$
, $x \sim_{r} y = x = y$ or $(x, y \ge r \text{ and } x \equiv my)$.

The relation \sim_r is a congruence on K'. Now identify the elements of K'/ \sim_r with the elements of the subsemigroup of R generated by $\{t_1, \cdots, t_h\}$ in the natural way. We then have:

<u>Theorem 2.</u> The semigroup $K'/_r$ is isomorphic to the subsemigroup of R generated by $\{t_1, t_2, \dots, t_h\}$.

REFERENCES

- 1. E. Hewitt and H. S. Zuckerman, "The L₁-Algebra of a Commutative Semigroup," Trans. Amer. Math. Soc. 83 (1956), pp. 70-97.
- J. Higgins, "Finitely Generated Commutative Archimedean Semigroups without Idempotent," Doctoral Dissertation, University of California, Davis, Unpublished (1966).
- 3. M. Petrich, "On the Structure of a Class of Commutative Semigroups," Czechoslovak Math. J. 14 (1964), pp. 147-153.
- T. Tamura, "Commutative Nonpotent Archimedean Semigroup with Cancellation Law I," <u>Journal of the Gakugei</u>, Tokushima University, Vol. VII (1957), pp. 6-11.