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1. INTRODUCTION

Many of the attempts to obtain representations for commutative and/or
Archimedean semigroups involve using the additive positive integers or sub-
semigroups of the additive positive integers. In this regard note references
[1], [3], and [4]. The purpose of this paper is to catalogue the results that
are known and to present some new results concerning the homomorphic im-

ages of such semigroups.

2. PRELIMINARIES

Let I denote the semigroups of additive positive integers. Lower case
Roman letters will always denote elements of I. Subsemigroups of I will be
denoted by capital Roman letters between J and @ inclusive. Results fol-
lowed by abracketed number and page numbers refer to that entry in the ref-
erences and may be found there. Results not so identified are original and
unpublished.

Theorem 1. ([2] pp. 36-48) Let K be a subsemigroup of I, then

i. There is k &1 such that for n= k, n€ K or

ii, Thereis n€ I, n> 1 suchthat n is a factor of all k € K.

Proof. Suppose there exist ky, <=+, kyy € K such that the collection
(ky, +++, k) has a greatest common divisor 1. Let K' be the subsemi-
group of I generated by {ki, Ky, °*o, kpy} clearly, K'C K. Let k = 2k
«kye+ oee s ko and for b >k, sincethe g.c.d. of (ky, «-+, km) is one
we may find integers oy, +++, &m such that ogky + e« +omky = b, (Note:
the @ are not necessarily positive.) We may now find integers q; and 1j
such that

where 0 < ris kl-v- ki—l”' k ({i=2,3,°°°, m). Nowlet
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Cy =C¥1+(qZ+---+qn1)kzk3---km, Ci:ri’ (i=2, 3, **+, m).

We now have

= + + eoe + .
b ciki Cgk.g kam

We have chosen ¢ =0 for i =2, 3, °*+, m. But since
LY = 3 s e = LI =
Czkz + + karn I‘gkz + + I‘mkm = k1k2 k.m b,

clearly c¢; = 0. Thus every b = k may be expressed as a linear combina-
tion of {kq, ***, km} where only positive integral coefficients are used.

If every finite sub collection of elements of K have g.c.d. greater
than one, then clearly all of K have g.c.d. greater than one.]

Corollary 1. ([2] p. 38). Every K is finitely generated.

It is clear that there are essentially two types of subsemigroups of I:

i. Those that contain all integers greater than some fixed positive in-

teger will be called relatively prime subsemigroups of I

il. Any other is a fixed integral multiple of a relatively prime sub-
semigroup.

Theorem 2. Let K, J be subsemigroups of I. Let the mapping K be
a homomorphism from K~ onto J. Then K is in fact an isomorphism of K
onto J of the type; for k € K. &K =Yk, where 7y is a fixed rational
number depending on K and J.

Proof. Since, by Corollary 1, K and J are finitely generated, let
(ky, =+ kyy) be a generating set of K. Let (jy, <+, j;) be the images
in J of (&g, ++, kyy;) under K. Clearly (ji, ***, j;). Now generate J.

kiky JK = Kikq)K = Kijs
since K preserves positive integral multiples, but we also have
kiki K = (ki)Kky = jik

and
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kijh = jik

so that

1 /i |

Clearly for a given subsemigroup K not any rational number 7 will
do. Note that:

but ji is an integer and, ky divides k;. If the collection (ky, <--, ky,)
have greatest common divisor equal to one, then clearly 7V is an integer. If
the collection (ky, **+, ky;) have greatest common divisor n # 1, then
Gy /o, =, km/n) generates a relatively prime subsemigroup of I, call it
K', and K and J are such that

K = nK', L =vyK',

where 7¥n is an integer. We have now shown:
Corollary 2. Let K and J be subsemigroups of I. For J anyhomo-
morphic image of K, K and J are integral multiples of a relatively prime

subsemigroup, K', of I

3. HOMOMORPHISMS

The results of Section 2 make it clear that no subsemigroup of I has
a proper homomorphic image contained in I. Let us now examine the proper
homomorphic images of subsemigroups of I,

Lemma 1. Let K be a relatively prime subsemigroup of I Let ~

be a congruence defined on K and satisfying:

Bx, y € K, x #y and X ~y.

Then, K/~ is finite.
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Proof. Since K is relatively prime there is a least k € K such that
forall n=k, n € K, Suppose x <y andat y - x = m. Now,

XxX+k ~ x+k+im, i=1,2,8,
since by induction
X+k ~(x+m+k =1y+k)
and if x+k ~ x+k+im, then
x+k ~x+h+{(+1m

by using the strong form of induction and adding k + (i)m to both sides of:
X ~ x+m, Clearly then, x +m +h +1 is an upper bound for the order of
K/~. ]

Lemma 2. For K, k as inLemmal,let n be the least positive in-
teger such that: for x, y€K, x~y and x-y = n. Then, for any c,
d€K, if ¢c ~d, ¢c<d, d-c = m: we have d - ¢ = jn,

Proof. (Let a be the least element of K such that a ~ a +n). We
may find k' € K such that ¢ +k' > a +k. Thus by Lemma 1, ¢ +k' isin

one of the classes determined by
a+k, a+k+1, eev, a+k+n-1.

Thus
c+k' =a+k+jn+1i,
and
c+k +m =a+k+jn+i,

but c+k'+m ~c+k', and a+k+jn+i ~a+k+jn+i, but this gives
at+k+i~a+k+i', Thus, i = i' since n is the least positive integral

difference of equivalent elements of K. ]
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For finite homomorphic images of subsemigroups of I, call n, as de-
fined in Lemma 2, the period of the congruence.

Lemma 3. Let K, k, n, a be as inLemma2. Let be a congruence
on K such that for ¢ ~d, d >¢c, d-c &€K. Then K/~ has exactly n
non-singleton classes.

Proof. Let d -c = m. Then by Lemma 2, m = jn. Wehave jn € K
and for p sufficiently large c + (p)jn = a +k. Thus, c + (p)jn ~ a + k +i
for some i; 0 =i=n -1, But since ne K, c+@)jn ~c for p=1,
2, 3, °++. Thus ¢ ~a+k+i and the non-singleton classes may be rep-
resented by a+k, a+k+1, cee, a+k+n-1, ]

If c¢ is an element of a relatively prime K, where ¢ ~ a+k+ i
(a,k being as in Lemma 2) then if ~ has period n we have: ¢ = a + ki
(mod n). This follows immediately from Lemma 2.

Congruences on a relatively prime K which fail to satisfy the condi-
tions of Lemma 3 may be described as follows. There are the n classes
represented by a+h, a+h+1, ¢, a+h+n-1; there are any number
of singleton classes for elements between a +h and the least element of K.
There may be finite non-singleton classes of elements between a + h and the
least element of K, but from Lemma 3no two elements in afinite class may
differ by an element of K.

4, SUBSEMIGROUPS OF CYCLIC SEMIGROUPS

In this section we treat subsemigroups of finite cyclic semigroups.
Let R be the finite cyclic semigroup of index r and period m. Elements
of R will be represented by integers; R will be written additively.

Lemma 1. Let T be the subsemigroup of R generated by the ele-
ments tj, £y, co°, tk' If the greatest common divisor of {q, Ty 200y ’ck,m}
is one, then T contains the periodic part of R.

Proof. Let t' be the g.c.d. of {tys tgs oo, th}. By Theorem 1,
Section 2, the subsemigroup of I generated by { t /t, ty/tr, e, tk/t'} con-
tains all integers greater than some fixed integer k. But for some p all

g = p are such that qt' > k. Now let

(k+i)t'—rsm(k+j)t’—r,
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then (nj - in)t' = n'm, but t' and m are relatively prime. Thus, m di-
vides nj - in.]

The remainder of the subsemigroup of R generated by { ts tgy 00,
th} is the intersection in R of the subsemigroup of I generated by the ti
considered as integers. If the g.c.d. of {q, tg, *°°, tk,m} =p=>1, then
the subsemigroup generated contains m/p elements of the periodic part of
R, and can thus be made isomorphic to a subsemigroup of the type described
in Lemma 1 by changing the period of R to m/p.

Finally, let K bethe subsemigroup of I generated by {tl, tg, *°*, tk}
considered as integers, where t;, tp, *°°, th € R a finite cyclic semigroup
of index r and period m, and the g.c.d. of {ti, toy oo¢, th,m} is one.
Let K' = K UN, where N is all of I greater than r. Clearly K' is a
subsemigroup of I. Let ~r be the relation:

) .

X, yEK', X~y =X =y or x, y=r and x =Y
The relation ~r is a congruence on K'. Now identify the elements of K' /~r
with the elements of the subsemigroup of R generated by {tl, s, th} in
the natural way. We then have:

Theorem 2. The semigroup K' /~r is isomorphic to the subsemigroup
of R generated by {tl, tgy oo, h}'
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