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For the inverse mapping P—7" we need

. 1) (p; - €)
fy ;) = 5 ,
where
gO for p; even,
€= }1 for p, odd .
Then

-1 -1 -1
fo £ = £ 15 P2s ***s Pn)

= (s s H0p)

6. POLYNOMIAL COUNTING FUNCTIONS

It is quite easy to see from (1) that there are at least n! polynomial counting functions
n - .
of P~ (obtained by permuting pj, py, **°, Pp). But for n =3 besidesthese six polynomi-

als of degree 3, there are six more polynomials of degree 4 obtained by composition of
f, such as
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£ (f2(p1> D2)» D3) -

For n = 4 there are 360 polynomials, provided that different compositions yield dis-
tinct polynomials.

We are unable to determine the number of counting polynomials of Pn, except the
case n = 1,

Theorem. The identical function fj(p;) = p; is the only polynomial mapping 1 -1
from P onto itself.

Proof. Suppose g(p) is a counting polynomial of P. Consider the curve y = g(x).
It is clear that after a finite number of ups and downs the curve is monotone increasing (to
+o), Let a be a positive integer such that (1) g(x) is monotone for x> a and (2) gx) <

g(@) for x < a. Since g(x) is a counting function of P, it has to satisfy

gla) = a, gla +1) =a+1, -,

For, if g(a) < a, then positive numbers g(1), g(2), ***, g(a) cannot all be distinct, and if
g(a) > a then the curve must come down beyond a, contrary to(1). Now, by the Fundamen-
tal Theorem of Algebra we have g(x) = x for all x.

S ~ 1 Sy - 1
X1+(22 > and X2+(22 )

the only two polynomials mapping 1 -1 from P? onto P?

Question. Are
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