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For the inverse mapping P—>Zn we need 

_! ( - l )€( P i - €) 
fQ ( p . ) = 2 

10 for p. even, 
11 for p. odd 

fo" fn*(p) = fo" (Pi> P2* ••• i Pn) 

= (.fo"1(Pi)9 • • • , fo'^Pn)) • 

68 POLYNOMIAL COUNTING FUNCTIONS 

It is quite easy to see from (1) that there are at least n! polynomial counting functions 
of P n (obtained by permuting p l 9 p2 , • • - , p n ) . But for n = 3 besides these six polynomi-
als of degree 3, there are six more polynomials of degree 4 obtained by composition of 
f2 such as 

where 

Then 
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h(h(Pi> P2K P3) • 

For n = 4 there are 360 polynomials, provided that different compositions yield d i s -
tinct polynomials, 

We are unable to determine the number of counting polynomials of P , except the 
case n = 1. 

Theorem. The identical function fi(pi) = pi is the only polynomial mapping 1 - 1 
from P onto itself. 

Proof. Suppose g(p) is a counting polynomial of P . Consider the curve y = g(x). 
It i s c lear that after a finite number of ups and downs the curve is monotone increasing (to 
+00). Let a be a positive integer such that (1) g(x) is monotone for x > a and (2) g(x) < 
g(a) for x < a. Since g(x) is a counting function of P , it has to satisfy 

g(a) == a, g(a + 1) = a + 1, ••• . 

For , if g(a) < a, then positive numbers g(l) , g(2), •• • , g(a) cannot all be distinct, and if 
g(a) > a then the curve must come down beyond a, contrary to (1). Now, by the Fundamen-
tal Theorem of Algebra we have g(x) = x for all x. 

Question. Are 

x ^ V 1 ) and -2
 + ( S 2 2 1 ) 

the only two polynomials mapping 1 - 1 from P2 onto P ? 
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