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H-205 Proposed by L Carlitz, Duke University, Durham, North Carolina. 

Evaluate the determinants of n o r d e r 

D = 
n 

z 1 
-1 qz 

-1 q2z 

-1 n ~ 2 i 

-1 q z 1 
-1 q z 

A n = 

z 1 
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n-2 -1 z q 
-1 z 

H-206 Proposed by P. Bruckman, University of Illinois, Urbana, Illinois. 

Prove the ident i ty : 

n - 1 

1/(1 -xn) = \YJ 1/{1 " X 

k=0 

H-207 Proposed by C. Bridger, Springfield, Illinois. 

Define G, (x) by the re la t ion 

2km/n x e ) 

1 - (x2 + 1)B2 - xs 3 Z Gk(x)sk • 
11=0 

where x is independent of s. 
1. Find a recursion formula connecting the G, (x). 
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2. Put x = 1 and find G, (1) in t e rms of Fibonacci numbers. 
3. Also with x = 1, show that the sum of any four consecutive G-numbers is a Lucas 

number. 

H-208 Proposed by P. Erdos, Budapest, Hungary. 

Assume 

(a, s> 2, 1 < i ^ k) 
a - ^ ! ••- ak! x"l 

is an integer. Show that the 

max > a. -o n ? 
i=l 

where the maximum is to be taken with respect to all choices of the a. fs and k. 

H-209 Proposed by L Carlitz, Duke University, Durham, North Carolina. 

Put 
n+1 0 n+l a - B 

u = § , 
n a - B $ 

where a = |3 = #/3 = z. Determine the coefficients C(n,k) such that 

"* = E C(n'k)Un-k+l (n * «• 
k=l 

//-<?/# Proposed by G. Wulczyn, Bucknell University, Lewisburg, Pennsylvania. 

Show that a positive integer n is a Lucas number if and only if 5n2 + 20 or 5n2 - 20 
is a square. 

H-211 Proposed by S. Krishman, Orissa, India. 

A. Show that f n J is of the form 2n3k + 2 when n is prime and n > 3. 

B. Show that f ~ f ) is of the form n3k - 2n - n, when n is pr ime. 

(?) 

/ 2 n - 2 \ 

ml represents the binomial coefficient, .f (S _ A\ 

H-212 Proposed by V. £ Hoggatt, Jr., San Jose State University, San Jose, California. 

Let n be a positive integer. Consider n edge-connected squares. How many con-
figurations are there if each row s ta r t s k squares to the right of the row above? (k denotes 
a non-negative integer.) 
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H-213 Proposed by V. £ Hoggatt, Jr., San Jose State University, San Jose, California. 

A. Let A be the left adjusted Pascal tr iangle, with n rows and columns and 0Ts 
above the main diagonal. Thus 

' 1 0 

A -• 1 1 ° 
n ' 1 2 1 0 

T T 
Find A • A where A represents the transpose of matr ix , A 
B. Let 

C = n 

1 

0 

0 

0 

0 

1 

1 

0 

0 

0 

1 

2 

0 

1 

nXn 

where the i column of C is the i row of Pasca l ' s triangle adjusted to the 
n ,-p 

main diagonal and the other entr ies a re 0Ts. Find C • A . 

H-214 Proposed by £ Karst, University of Arizona, Tucson, Arizona. 

Let x = y2 + z2 be the first pr ime in a sequence of 10 pr imes in A. P. and 

x + 22 • 34 = (y + 2 • 32 • 7)2 + (z - 25 • 32)2 

the first pr ime in another sequence of 10 pr imes in A.P. where both sequences have the same 
common difference. The second member after the 10 prime in the f irst sequence is divis-
ible by 17 and has a factor which is the square of a 3-digit prime; the second member be-
fore the f irst pr ime in the second sequence is also divisible by 17, and i ts f irst three digits 
a re a permutation of the last three digits which form a perfect square. The common differ-
ence consists of prime factors, each of them smaller than 17. Find x, y, and z. 

SOLUTIONS 
AN OLD FRIEND REVISITED 

H-118 Proposed by G. Ledin, Jr., San Francisco, California. 

Solve the dif ference equation 

n+2 n+2 n+1 n 

with Ci = a, C2 = b, and F , the n Fibonacci number. 
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Solution by Clyde A. Bridger, Springfield, Illinois. 

Write the following se r ies of equations, beginning with n = l , 
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C3 = F3 C2 + a 
C4 = F4 C3 + C2 

We see at once that 

n+1 n+1 n n -1 
Cn+2 = F n+2 C n+l + C n 

C3 = Fa b + a = 

C4 = F4(F3b + a) + b 

etc. So the solution in determinant form is 

b a 
-1 F3 

a 
F 3 0 - 1 

""n+2 

b 
1 
0 
0 

a 

F 3 

- 1 
0 

0 
1 

F 4 

-1 

0 
0 
1 

F 5 

0 0 

0 0 
"n+1 

0 
1 

F4 

0 

0 
0 
0 

0 

0 
0 
0 

-1 *n+2 
as may be verified by expanding in t e rms of the minors of the las t row. 

The ratio of two adjacent solutions of the difference equation can be developed into a 
continued fraction. Write, using the above sets of equations, ' 

c4 

c3 

Cn+2 
C n + 1 

F3 + E 

TP -I 
n+2 F _,, + n+1 

F4 

n 

, 1 

1 
1 

+ 

F 3 + f 
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Also solved by R. Whitney. 

ANOTHER OLD TIMER 

H-108 Proposed by H. E. Huntley, Hutton, Somerset, U.K. 

Find the sides of a tetrahedron, the faces of which are all scalene triangles s imilar to 
each other, and having sides of integral lengths. 

Solution by the Proposer. 

The interesting ar t ic le , "Mystery Puzzle and Phi , n by Marvin H. Holt (Fibonacci Quar-
ter ly, Vol. 3, No. 2, p . 135) contains a solution. See H. E. Huntley1 s The Divine Propor-
tion, Dover, New York, N. Y. , 1970, pp. 108-109, Section entitled "The Tetrahedron 
Problem. " 

SHADES OF THE PAST 

H-86 Proposed by V. E. Hoggatt, Jr., San Jose State University, San Jose, Calif. (Corrected) 

P q 
Let p ,q be integers such that p + q ^ l , q ^ O ; show that if x (x - 1)M - 1 = 0 has 

roots r l 9 r2 , 
for i = 1, 2, 

r , and (x - l ) p - x p = 0 has roots s i , p+q l 

, p + q. 
s , then s. p+q i 

Solution by L Carlitz, Duke University, Durham, North Carolina. 

Presumably the problem should read: 
Show that if xp(x - l ) q - 1 = 0 has roots rl9 r2, 

has roots Si, s2, 
, r and (y - l ) p + q - y p = 0 

p+q J J 
, s , , then the roots can be so numbered that p+q' 

rP+Q 
i s? 

1 
(i = 1, 2, • • ' , p + q) 
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Proof. Consider the transformation 

x - l - 1 

y - 1 ' 
This implies 

x 

Hence S if x satisfies x^(x - l ) q = 1, we get 

Q P+q 
y ^ = x

 =
 x

 = XP+Q 

(x - l ) q xP(x - l ) q 

This evidently yields the stated result , 

PARTIAL SOLUTION 

H-125 Proposed by Stanley Rabinowitz, Far Rockaway, New York. 

Define a sequence of positive integers to be left-normal if given any string of digits, 
there exists a member of the given sequence beginning with this string of digits, and define 
the sequence to be right-normal if there exists a member of the sequence ending with this 
string of digits. 

Show that the sequences whose n te rms are given by the following are left-normal 
but not r ight-normal. 

a. P(n), where P(x) is a polynomial function with integral coefficients. 
b. P , where P is the n pr ime. 

ns n F 

c. nl 
d. F , where F is the n Fibonacci number. 

n n 

Partial Solution by R. Whitney, Lock Haven State College, Lock Haven, Pennsylvania. 

b. The art icle "Initial Digits for the Sequence of P r i m e s , " by R. E. Whitney (Amer. 
Math. Monthly, Vol. 79, No. 2, 1972, pp. 150-152) established apositive relative logarithmic 
density for the set of pr imes with initial digit sequence ( a , a _-, • •" , a -} in the set of 
p r imes . Thus P is left-normal. On the other hand, no member of P ends in " 4 , " so 
P is not r ight-normal. n & 

I believe that the left-normality of F can also be established with a density argument. 

Editorial Note 

The following l is t represents those problems for which no solutions have been submitted. 
Le t ' s fight problem pollution! 

H-76, H-84, H-87, H-90, H-91, H-84, H-100, H-110, H-113, H-114, H-115, H-116* 
H-122, H-125 (partial), H-130, H-146, H-148, H-152, H-170, H-174, H-179, H-182. 

This l ist represents problems less than or equal to H-185. 


