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1. CONVOLUTED SUM FORMULAS 

In this paper we investigate generalized convoluted numbers and sums by using recur-
ring power ser ies 

m \ " oo 
(1) I 1 + 2 ^ a y x v J = ^ u(n,k,m) x11 , 

v=l / n=0 

where the coefficients a and u(n,k,m) are rational integers k = 1, 2, 3, " " , u(0,k,m) = 

1 and m = 1, 2, 3, 
By elementary means, it i s easy to prove, if 

(2) 

then 

where 

H ,-k W(k) v (1 " y) = 2-J bv y 

v=0 

(n + k - l \ _ ,(k) 
V k - 1 / ~ Dn ' 

and 

b0
(k) = 1, k = 1, 2, 3, • • • , n = 0, 1, 2, • • - , 

\ k - 1 X) = (n + k " W-fak - 1)l • 

Elsewhere [ l ] , it has been shown that the following convoluted sum formulas hold: 

•**»-5:(,tE:i",)(,V)*n* o) u(n,k,2) = > . ( " ; ; : " J ) i " : J j ar "j 4 

(n = 0, 1, 2, • • • , k = 1, 2, 3, • • • ) ; 

and 

•(k +"k- .r- i ) ( i ' -*)( , r j ' ) )•*"•?"*•'] 

(4) 
r=0 j=0 

15 
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where S = n - 4 r - 2 + j , T = 2r + 1 - 2j , n = 0, 1, 2, • • • , and k = 1, 2, 3, ' ' ' . 
The u(n,k,2) in (3) are called "generalized Fibonacci numbers , " the u(n,k,3) in (4) 

are called "generalized Tribonacci numbers*" we shall te rm the u(n,k,4) as the "general -
ized Quatronacci numbers , " and the general expression u(n,k,m) in (1 for m = 5, 6, • • • ) 
we shall refer to as the "generalized Multinacci numbers . " 

Now in (2) we let 
m 

y = ^ a w x w (m = 2, 3, • • • ) 
w=l 

and put 

00 « 

(5) (1 - y)~k = ] T u(n ,k ,m)x n = ^ b ? ^ ' 
n=0 v=0 

and by comparing the coefficients in (5), i t is easy to prove with induction, that 

r i r 2 r o 
i L m _ 2 

(6) > . " > " . > ; • • • • > ' * fo,m)FtQfm)b^ = u(n,k,m) , 
r 1 =0 r2=0 r3=0 ^ ^ = 0 

where 

n-2ri+r? ri-2r2+rQ r 0 - 2 r ,,+r - r 0 - 2 r ., r -
^, x \ i \ L 6 m _ 3 m _ 2 m _ i m _ 2 m - 1 m - 1 
F(n,m) = ai a? ••• a 0 a n a , 

' * L m-2 m - 1 m ' 
,(k) _ / n + k - r t - l \ b n - r t " V 1 - 1 J > 

and n = 0, 1, 2, • ' * , m = 2, 3, 4, • • • . 
Of course the convoluted sum formula of the generalized Quatronacci number u(n,k,4) is 

immediate as a special case of (6, with m = 4). 

2. A GENERAL METHOD TO FIND FORMULAS FOR THE u(n,k,m) 
ASA FUNCTION OF u(j , l ,m) (n,j = 0, 1, 2, • • • ) 

In [ l ] , it has been shown that the following formulas for the generalized Fibonacci num-
bers hold: 

(7) (a! + 4a2)ku(n - 1, k + 1, 2) = atnu(n, k, 2) + a2(4k + 2n - 2)u(n - 1, k, 2) , 

where u(0,k,2) = 1, u ( l ,k ,2) = ajk, and n ,k = 1, 2, 3, • • • . 
Now, using the resul ts in (7) we are able to write the following: where 
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A = ai + 4a2, B(k,n) = 4k + 2n . - 2 , u(0,k,2) = 1,. u(l-,k,2) = atk, n ,k = 1, 2, 3, • • • , 
and 

u(n , l ,2 ) = u(n - 1, 1, 2)a4 + u(n - 2 , 1, 2)a2 , 

(where aj and a2 a re rational integers) we have 

(8) u(n - 1, 2, 2)A = u(n , l ,2)na! + u(n - 1, 1, 2)B(l,n)a2 , 

(8.1) u(n - 1, 3, 2)A22l = ( a ^ n B d , n + 1) + a ^ n B ^ n ) + afn(n + l ) )u(n, l ,2) 

and 

(8.2) 
where 

+ (a2B(l,n)B(2,n) + a|a2n(n + l))u(n - 1,1,2), 

M 

u(n - 1, 4, 2)A33l = M + N , 

' a ^ n B d , n + l)B(3,n) + a!a2nB(2,n)B(3,n) 

+ afa2n(n + l)B(3,n) + a ^ n E d , n + 1)B(2, n + 1) 

+ a|a2n(n + l)(n + 2) + afa2n(n + 1)B(1, n + 2) 

+ afa2n(n + 1)B(2, n + 1) + ajn(n + l)(n + 2) 

u(n , l ,2 ) , 

and 

N = 

2 „ 2 , a£B(l,n)B(2,n)B(3,n) + afajjiiGi + l)B(3,n) 

+ aia2n(n + 1)B(1, n + 2) + afa2n(n + l)B(2,n + 1) 

+ afa2n(n + l)(n + 2) 

u ( n - 1,1,2) 

It should be noted that the method used in [ l ] to derive the formulas (8), (8.1), and(8.2) 
may also be used to develop formulas of the u(n,k, 2) for values of k = 5 and higher. 

In this paper we find for the f irst time a general method to express the u(n,k,m) as a 
function of the u ( j , l ,m) (j = 0, 1, 2, • • •) with m > 2 (m = 2, 3, 4, •• •) . 

Let 

(9) E 
m-2 m - 1 

v=l 
= y^ d x v , and w = \ b : 

v=0 v=0 

where a, d and b are rational integers , m ^ 2 (m = 2, 3, • ••) and 

(9.1) M(m) = zy - w(dy/dx) (M(m) is a rational number) 

-k -k 
Now, differentiating the identity y = y , we have 
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(10) -k(dy/dx) /y k + 1 = d(«x)k/dx , 
where 

/ o c \ k 

<j> (x) = | / u(n ,k ,m)x n J = y , k = 1, 2, 3, • • • , and m > 2 . 
\ n = 0 / 

k+1 We then respectively, multiply (9.1) through by k and divide (9.1) through by y 
and combine the resul t with (10). This leads to 

(kM(m) - kzy ) /y k + 1 = (d<«x)k/dx)w , 

and we have 

(11) xkM(m)/y k + 1 = xkz /y k + wx(d<Mx)k/dx) 

Now, comparing coefficients in (11), we conclude that 

u(n - 1), k + 1, m)kM(m) = 

m-2 m - 1 (12) v^ v^ 
k y u(n - 1 - v, k, m)d + \ u(n + v + 1 - m, k, m)(n + v + 1 - m)b _ _-

v=0 v=0 

To complete (12), we notice it is necessary to solve (9.1), and this is easily accom-
plished by collecting the coefficients of x . Comparing the coefficients then leads to the fol-
lowing 2m - 1 equations: (Note: In what follows B. = ja. , and also for convenience we have 
replaced a with -a (j,v = 1, 2, 3, • • • , m. ) 

(13) 
dQ = M(m) + Bib0 , 
a ^ = di + B2b0 + Bibt , 
a2d0 = - a ^ + d2 + B3b0 + B2bi + Bxb2 , 

a 0dA = -a Qd- - a ,d0 - • • • - a-d 0 + d 0 + B -bA + B 0 b - + • • • + B-b n , m-2 0 m - 3 1 m-4 2 1 m - 3 m-2 m - 1 0 m-2 1 1 m-2 
a ndA = - a 0 d . - . . . - and 0 - a-d 0 + B b~ + B -b- + . • . + B-b - , m - 1 0 m-2 1 2 m - 3 1 m-2 m 0 m - 1 1 1 m - 1 
a d~ = -a dn - . . . - a0d 0 - a0d 0 + B b- + ••• + B0b - , m 0 m - 1 1 3 m - 3 2 m-2 m l 2 m - 1 
0 = - a d. - . . . - a .d 0 - aQd 0 + B b 0 + • • . + B0b - , m l 4 m - 3 3 m-2 m 2 3 m - 1 

0 = -a d o - a nd 0 + B b 0 + B -b - , m m - 3 m - 1 m-2 m m-2 m - 1 m - 1 
0 = - a d 0 + B b -m m-2 m m - 1 

(dividing through by a this las t equation becomes 0 = -d 0 + mb ., ) . & & J m M m-2 m - 1 

Next we consider in (13) the 2m - 1 equations in the 2m - 1 unknowns M(m), dl9 d2, 
"" ' » 1̂ 0> b0, bi, • • • , b - , where for convenience we write m—u m.—x 
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S(m,0,0) = M(m) ; S(0,1,0) = d1? S(0,2,0) = d2s 

(14.1) S(0, m - 2, 0) = d ; 8(0,0,1) = bj , S(0,0,2) = b2 , 

19 

S(0,0, m - 1) = b m - 1 * and b0 = bn 

The 2m - 1 equations in the 2m - 1 unknowns S(g) (where we consider g to run 
through all the 2m - 1 combinations one at a time of the S( ) (we also include b0) in (14.1)) 
can be solved by Cramer f s rule to obtain 

(15) D(m)S(g) = D(g) , 

where D(m) and D(g) are the determinants given below: 

(15.1) 

D(m) = 

and 

1 0 

0 1 

0 -at 

-a m-3 

m - 1 
-a 

m 

0 

0 

0 

0 

1 

a m-4 

a m - 3 

a m-2 

a m - l 

0 

0 

- a 0 

0 

0 

0 

1 

- a l 

Bn 

B r 

B 

m 
0 

-a m - 1 
1 

m - 1 
B 

m 
0 

0 

B l 
Bn 

B m-2 

B m - 1 
B m 
0 

0 

0 

0 

0 

0 

B l 

B2 

B 2 

B„ 

(Determinant D(m) = the coefficients of the S(g) ) 

0 

0 

0 

0 

B l 
Brt 

m - 1 
m 

(15.2) D(g) is the determinant we get when replacing in (15.1) the appropriate column of the 
coefficients of any S(g) with the column to the extreme left in (13) (the t e rms in the column 
to the extreme left in (13) from top to bottom are : d0, al9 d0, • • • , a m , do, 0, • • • , 0, 0). 

Note. Upon investigation we notice that there is no loss of generality if we put 

(15.3) D(m) . 

We shall now use the above method to derive formulas for the generalized Multinacci 
number. 

We first find formulas for the generalized Tribonacci number. We write the generalized 
Tribonacci power ser ies as follows: 
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(16) (1 - aAx - a2x2 - a3x3) = y ^ u(n,k,3)xn , 

n=0 

where k = 1, 2, 3, • • • , the a a re Integers and u(0,k,3) = 1. 
Now combining (16) with (9.1), we write 

(17) M(3) = (do + dix)(l - a tx - a2x2 - a3x3) + (a4 + 2a2 + 3a3x3)(b0 + btx + b2x2) 

and combining (17) with (15.1 and 15.3, with m = 3), we have 

0 0 0 

0 1 B2 Bi 0 

(17.1) d0 = D(3) = I 0 - a i B3 B2 Bi 

0 -a2 0 B3 B2 

0 - 1 0 0 3 

and of course applying the directions in (15.2, with m = 3) in combination with the deter-
minant D(3) in (17.1)pleads to the following: 

do D(3) = 27a| + 15aia2a3 - 4a2 

18aia3 - 6a2a3 

(17.2) 
b0 = 4a2

la3 + 3a2a3 - axa2 

bi = 9a2. + 7aia2a3 2a| 

b2 = 6aia| - 2a|a3 

M(3) 27a3 + 18aia2a3 + 4afa3 - 4a2 - afa2 

We now combine (16) and (17.2) with (12, with m = 3), which leads to 

(18) 

k(27a3 + 18aia2a3 + 4aia3 - 4a2 - aja2)u(n - 1, k + 1, 3) 

= (4aia3 + 3a2a3 - aia2)nu(n,k,3) 

+ ((n - l)(9a3 + 7aia2a3 - 2a|) + k(27a3 + 15aia2a3 - 4a2))u(n - 1, k, 3) 

+ ((n - 2)(6aia3 - 2a2a3) + k(18aia3 - 6a2a3))u(n - 2, k, 3) . 

(18.1) In (18) it is evident that if we put k = 1 we can find the u(n,2,3) as a function of the 
u(n, 1, 3) and also for k = 2 we find u(n, 3, 3) as a function of the u(n, 2, 3), so that we have 
u(n,3,3) as a function of the u (n , l , 2 ) . In this way, step by step for k > 1 (with induction 
added), it is easy to see that we can find formulas of the u(n,k, 3) as a function of the u (n , l , 3 ) . 
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(19) Using the exact methods which lead to (18) and (18*1), we find formulas for the Quatro-
nacci (u(n,k,4)) numbers (with k > 1) as a function of the u(n, 1,4), and we find formulas 
for the generalized Multinacci (u(n,k,m) with m = 5, 6, 7, e - e and k > 1) numbers as a 
function of the u(ns l , m ) . 

3. THE GENERALIZED MULTINACCI NUMBER EXPRESSED AS A LIMIT 

Note. In [ l ] the generalized Fibonacci number is expressed as the following: 

(20) n l im t t (u (n , k + 1, 2)/(n + l ) k u ( n , l , 2 ) ) = (1 + a^af + 4a2)~2) / 2
k k » , 

where 
k ,n = 1, 2, 3, ••• . 

In this paper we find asymptotic formulas of the u(n,k,m) (with k 9 m ^ 2 ) expressed 
in t e rms of u ( n , l , m ) , a , n, and k. 

However, before finding our asymptotic formulas, we make some 

(21) SUPPLEMENTARY REMARKS 

This author, for the f i rs t t ime, proved the following in 1969 [ 2 ] , Define 

f 
2 > w x W = F(x) ^0 
w=0 

(for a finite f) , 
t m d 

X>wxW=TT(l-v>w = ^ 
w=0 w=l 

for a finite t and m, where the d ^ 0 a re positive integers , the r , ^ 0 and are d i s -
w w 

tinct and we say | r* | i s the greatest | r | in the | r j* We then proved the following 
Theorem. If 

00 

F(x)/Q(x) = J ] u
w

x W
5 

w=0 

then 
1 / u .1 n / n - j | 

(for a finite j = 0, 1, 2, *••) converges to | r J j , where the r / 0 in Q(x) are distinct 
with distinct moduli and j r41 i s the greatest | r | in the j r |„ 

We are now in a position to discuss the generalized Multinacci number expressed as a 
l i m i t 

F i r s t , we consider when m = 3 and we multiply equation (18, with k = 1) through by 
l/nu(n - 1 , 1 , 3 ) to get 

Mm 
n —»QO 
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M(3)u(n - 1, 2, 3)/nu(n - 1, 1, 3) = b0u(n, 1,3)/u(n - 1, 1, 3) 

( 2 2 ) + ((n - l)bi + d0 )u(n - 1 ,1 , 3)/u(n - 1 , 1 , 3)n 
+ ((n - 2)bi +di)u(n - 2 , l , 3 ) /u (n - 1 ,1 , 3)n 

(23) In (21) we have u(n, l ,3) /u(i i - 1 , 1 , 3 ) = r where r i s the greates t root in 

x3 - aAx2 - a2x - a3 = 0 , 

so that equation (22) may be written as 

(23.1) lrni^ M(3)u(n - l ,2 ,3) /nu(n - 1,1,3) = rb0 + b t + b 2 / r = (say) L(3) . 

Now, we multiply (18, with k = 2) through by 

M(3)/n2u(n - 1, 1, 3) , 
to get 

2(M(3))2u(n - 1, 3, 3)/n2u(n - 1, 1, 3) = 

+ [u(n,2,3)M(3)b0/nu(n - 1 ,1 ,3)] [ u ( n , l , 3 ) /u (n , l , 3)] 

+ ((n - l)bi + 2d0)u(n - 1, 2, 3)/n2u(n - 1, 1, 3) 

+ [((n - 2)b2 + 2d!)u(n - 2,2,3)M(3)/n2u(n - 1,1,3)] [u(n - l ,2 ,3 ) /u (n - 1 , 2 , 3 ) ] , 

where combining this resul t with (23.1), and with n-» oo, leads to 

^ i rn^ (21 (M(3))2u(n - l ,3 ,3) /n2u(n - 1,1,3)) = b0L(3)r + b2L(3)/r 

( 2 4 ) = (b0r + bi + b2/r)L(3) = (L(3))2 

We continue with the exact method that gave us (24) step by step and with induction, 
which leads us (for k = 1, 2, • • •) to: 

The generalized Tribonacci number expressed as a limit 

(25) lim (k!(M(3))ku(n,k + l ,3 ) / (n + l ) k u (n , l ,3 ) ) = (L(3))k , n—* oo 

where L(3) is defined in (23.1). 
Now, with the exact method that was used in finding (25) applied to the equation in (12) 

and step by step (and with added induction), we prove that: 
The generalized Multinacci number expressed as a limit is 

(26) l im (k!(M(m))ku(n,k + l , m ) / ( n + l ) k u (n , l ,m) ) = (L(m))k , n—* oo 
where 
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m - 1 
^ M(m)u(n,2,m)/(n + l)u(Q,l,m) = ^ b y r 1 v = (say) L(m) , 

v=0 

r i s the greatest root in 

m 
x 

\ ^ m-w A 
- > a x = 0 , 

w=l 

the M(m) and the b are found by using Cramer f s rule as defined in (15) through (15.3), 
m = 2, 3 , 4, ••• , n = 0, 1, 2, ••• , k = 1, 2, 3, ••• , and u(0,k,m) = 1. 

4. A GENERALIZATION OF THE BINOMIAL FORMULA 

Put 

m m 
/ J a ( n , l , m ) x n , 

w=0 n=0 

so that 
k 1 

mk 
(27) y k = [ ^ T a w x w \ = ] T a(n,k,m) x11 , 

* w=0 / n=0 

where m = 1, 2, 3, • • • , k = 1, 2, 3, ••• • , and the a are arbi t rary numbers (ao fi 0). 
k -1 k w 

It i s evident that y y = y 9 and combining this identity with (27) and then comparing 
the coefficients, leads to 

m 
(28) a(mk - q, k, m) = \ a (v , l ,m)a(mk - q - v, k - 1, m) , 

v=0 

where q ranges through the values q = 0, 1, 2, • • • , mk - m, k = 2, 3, 4, • • • , and m 
1. 2, 3 , • • • . 

Differentiating equation (27) leads to 

/mk-m \ / m \ mk 
kl \ a(v, k - l ,m)x II / va(v, l ,m)x J = / va(v,k,m)x , 

\ v=0 / \ v = l / v=l 

and comparing the coefficients in this result , we have 
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m 
(29) (mk - q)a(mk - q, k, m) = k y ^ v a ( v , l ,m)a(mk - q - v , k - 1, m) , 

v=l 

where q ranges through the values q = 0, 1, 2, • • • , mk - m , k = 2, 3, 4, ••• , and 
m = 1, 2, 3, • • • . 

We multiply equation (28) through by mk - q so that the right side of (28) is now an. 
identity with the right side of (29), and arranging the t e rms in this resul t leads to 

(mk - q)a(09l9m)a(mk - q, k - 1, m) 

m 
= 2 a (v , l ,m)a(mk - q - vs k - l ,m)(vk - mk + q) . 

(30) m 

v=l 

Then replacing k with k + 1 in (30), we have 

(mk + m - q)a(09l9m)a(mk + m - q, k, m) 

(31) 
y> a(v , l ,m)a(mk + k - q - v, k, m)((v - m)(k + 1) + q) , 
v=l 

where m , k = 1, 2, 3, • * • , q ranges through the values q = 0, 1, 2, • • ° s mk9 mk + k - q 
= v ^ 0, and it i s evident that 

k k 
a(0,k9m) = (a(0s l ,m)) , and a(mk9k,m) = (a(m,l9m)) . 

As an application of (30) we find a value for a ( l 9 k 9 m) . Let mk + m - q = 19 so that 

m 
a(0 9 l 9 m)a( l 9 k 9 rn) = y a (v , l 9 m)a ( l - v9 k, m)(vk + v - 1) , 

v=l 
then 

a (0 9 l 9 m)a( l 9 k 9 m) = ka(0 9 k 9 m)a( l 9 l ,m) = k(a(09l ,m)) a ( l 9 l , m ) 
and we have 

k -1 a( l 9 k 9 m) = k(a(09l5m)) a ( l 9 l 9 m ) . 
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