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ABSTRACT 

A number theoretical conjecture of Milnor i s p resen ted examined and the existence of 
non-standard di f ferent ia te s t ructures on (4k - 1)-spheres for integers k, 4 ^ k ^ 265, 
is proved. 

1. INTRODUCTION 

In 1959, J. Milnor [l] proved the following theorem concerning non-standard differen-
tiable s t ructures on (4k - 1)-spheres, 

Theorem 1. If r is an integer, such that k /3 < r ^ k /2 , then there exists a differ-
4k- l entiable manifold M, homeomorphic to S with A(M) = s s. N/s. ( m o d i ) , where 

QI • ni i j - J£—r K. 
s, = 2 (2 - 1)B, /(2k)!, all of the prime factors of the integer N are l ess than 2(k -

th r ) , B, is the k Bernoulli number in the sequence BA = 1/6, B2 = 1/30, B2 = 1/42, 
B4 = 1/30, • • • , and A is an invariant associated with the manifold M. 

Milnor presents an algorithm based on Theorem 1, proves s t ructures exist for k = 2, 
4 , 5, 6, 7, 8, conjectures that Theorem 1 implies the existence of these s t ructures for k > 
3, and states that he has verified the conjecture for k < 15. He points out that for k = 1 
and k = 3 no integers r exist in the interval (k/3, k /2] and that for k = 1, two differ-
entiable homeomorphic 3-manifolds are diffeomorphie. 

The Milnor algorithm will be described by considering the f irs t seven cases . In each 
case an actual lower bound will be calculated for the number of said structures; to calculate 
this bound we consider the denominator of the reduced fraction and drop all prime factors 
l ess than 2(k - r ) . 

1. k = r , r = 2. 

{* W - 1 )^ / (2* - DB4 = (7V3)(1/127), lb = 127 

2. k = 6, r = 3. 

( 1
4 ° ) (2 3 - 1)(25 - l )B 2 B 3 / (2 9 - 1)B5 = (11/5) (31/73), lb = 73 

* Research supported in par t by an NSF Summer Teaching Fellow Grant, also by NSF grant 
GP-13708, and by the BYU Computer Center (for 20 consecutive hours of computation time I). 
Copies of the tables referred to in the text may be obtained from the wri ter at the address 
listed in the current Combined Membership List of the A MS. 
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3. k = 6, r = 3. 

( 1 g ) ( 2 5 - D 2 B 1 / ( 2 1 1 - 1)BG = (2-5-ll-13)(312/23-89-691) , 

lb = 23-89-691 

4. k = 7, r = 3. 

(Xg J (25 - 1)(27 - l )B 3 B 4 / (2 1 3 - 1)B7 = (11-13/2.5.7)(3L 127/8191) , 

lb = 8191 

5. k = 8, r = 3. 

f 1
6

6 J ( 2 5 - 1)(29 - l )B 3 B 5 / (2 1 5 - 1)B8 = (22-52-13.17/3)(73/151.3617) , 

l b = 151-3617 . 

6. k = 9, r = 4. 

[ 1
8

8)(27 - 1)(29 - l )B 4 B 5 / (2 1 7 - 1)B9 = (2.3-72-13-17-19)/(73.127/43867.131071) , 

lb = 43867-131071 . 

7. k = 10, r = 4 

(2g W - D(2U - l )B 4 B 8 / (2 1 9 - 1)B10 = (ll-17-19/7)(23-89.127/283-617.524287) , 

l b = 283-617-524287 . 

3. k = 10, r = 4 

(^A (29 - l)2B2
5/(219 - 1)B10 = (2-53.72-13.17.19/3)(732/283.617.524287) , 

lb = 283-617-524287 . 

9. k = 8, r = 4 

f Xg J(27 - l )2B4/(21 5 - 1)B8 = (3.5-ll-13.17/7)(1272/31.151?3617) , 

lb = 31-151-3617 . 
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There will be [k/2] - [k /3] integers in the interval (k/3, k /2] and one may choose 
the la rges t of the lower bounds. We now restate the positive outcome of the algorithm in the 
form of the following 

Conjecture 1. Let r be an integer, r £ (k/3, k / 2 ] , k > 3, 

(s) ^ 1 ) ( 2 2 k - 2 r - l _ i ) B r B k r / ( 2 2 k " 1 - l)Bfc = a /b , (a,b) = 1 , 

then there exists a prime number p , p ^ 2(k - r ) , such that p divides b. 
This purely number theoretic conjecture implies the existence of more than 2(k - r) 

4k-1 
non-standard differentiable s t ructures for S , the (4k - 1)-dimensional sphere. Con-
jecture 1 has , aside from i ts aesthetic number theoretical interest , the additional signifi-
cance of important topological consequences, and is one more example of the ubiquitous na-
ture of the Bernoulli numbers. 

2. REPRESENTATION STRUCTURE OF THE BERNOULLI NUMBERS 

Although the Bernoulli numbers have been objects of published mathematical thought 
for over two centuries, in some respects , embarrassingly little i s known about them. We 
shall present the features of these numbers useful to us in examining Conjecture 1. 

A s a typical beginning point we write [2] 

(1) x(eX - 1) = Ya b
k

X / k l 

k=0 

and since b0 = 1, bA = - 1 / 2 , and x/(e - 1) + x /2 is an even function, we write 

b2k = ^ " X « * b2k+l " °« k S 1-

We have 
00 

2k, (2) 1 - (1/2) cot (x/2) = J2 Bkx2 k/(2k)I 
k=l 

and by the double ser ies theorem [3] , we see that 

(3) B k = 2(2k)!£(2k)/(27r)2k , 
where 

CO 

-2k {(2k) = ^ n" 
n=l 
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the Dirichlet ser ies usually referred to as the even zeta function. An equivalent definition 
to (1) is the umbral recursion [ 4 ] , 

(4) (b + l ) k - b k = 0, b0 = 1 , 

which reduces to 

k 

(5) S k r X br = °' bo = 1 • 
r=0 

Equation (1) is the reciprocal of 

00 

k> ]T xk/(k + 1)1 
k=0 

and an expression for the b, may be written with symmetric functions of the coefficients of 
the reciprocal of (1). We may ra ther write [5] , [6] 

0 0 / C O 

(6) x/(ex - 1) = 2 ("1)m( 2 X / ( k + 1)l 

m=0 \ k = l 

so that [7] 

2k 
x k - l v ^ , ,m E (_)m V / m \f 2k 

w ^ l a 1 } " . , a 2 k j y ( l ; a i ) , • • • , (2k;a2 

x ( l / 2 a i « 3 a 2 - « - (2k + l ) & 2 k 

B k = W 
(7) m ^ X / V 2 k 

where the sum is over the partitions of 

2k 2k 

2k, -^T a. = m, ^ i a i = 2 k > 
i=l i=l 

= mt/alblcl ••• , ( m \ 
I a, b , c, ••• 1 

( (a;«) ," . ( d ; , ) ) = m ! / (a:f . . . (d' . )^ 
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and there will be p(2k) t e rms [8] . A variant of (7) is 

(8) <-)k"V = -a/2k +1) + y ; (-)m T T p 8 ^ * * - ' " >**> 
K p<2k 

where the product is over all pr ime numbers less than 2k, the functions 8(p, k9 s.i9 • • • , 
a2, ) a re all integers and the sum is over all the partitions of 2k but one. 

The calculation of Bernoulli numbers has been a lively subject [9] , and there exist 
several tables of these numbers, [The most massive is D. Knuty, MTAC, Unpublished 
Mathematical Tables File. The caretaker of this file, J . W. Wrench, has informed us that 

-8k from Knuthfs manuscript of 1270D values of 10 B. for k = 1(1)250 one can obtain the 
exact values of only the f irst 159 Bernoulli numbers.] To facilitate the computation of 
Bernoulli and related numbers , Lehmer generalized a process of Kronecker to produce 
lacunary recurrences of which the following are typical [10]. 

(9) 

(10) 

[ m / 2 ] 

A=0 

[m/2 ] 

E B m - 2 A ( S +
+ 4 4 ) « - ) X 2 2 X + 1 + 1 ) = « m + 2 ) / 2 ) ( ( - ) [ m / 2 ] 2 m + 1 + 1 ) . 

A=0 

[m/3] ( 
, . -r-» / 2 m + 3 \ = J -(2m + 3)/6, if m = 3k 
U 1 ' 2-» ^m-3X I 6X + 3 I i (2m + 3)/3, otherwise , 

>=0 K ' \ 

<"> E Bm-4x(28X+
+

4
4)2 m + 1-2 [ ( l n + 1 ) / 4 ] - 2 X-4x+2 = <-> ^ W + « * „ « , 

A=0 

where 

n = _34gK _ gR and 3R = 2, 0, 3, 10, 14, -12, -99, -338 , 
n n-4 n-8 n 

for n. = 0, 1, 2, 3, 4, 5, 6, 7, respectively, 

(13) 
[ m / 6 ] 
y * ~ J / 2 m + 6 V A26A+2 I ((m + 3 ) / 3 ) ( * m + 2 + < - ) [ m / * ] 2 m + 2 ) , 
2 ^ B m-6A\ 12A + 6 ) ( * W 2 + H 2 } " m + 2 

X=0 ! if m £ 2(3); 
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- ( (m + 3)/6)te + „ + ( - ) [ m / 2 ] 2
m + 2 - ( - ) ( ( m + « / 3 ) 3 ) , 

where 

and 

m+2 

if m E 2(3) , 

ft = -2702S3 - ft , 
n n-6 n-12 

S3 = 1, 5, 26, 97, 265, 362, -1351, -13775, -70226, -262087,-716035, -978122, 

for n = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, respectlvely„ 
The point of creating lacunary recurrences is to avoid dealing with all the B , say 

r < k, to calculate B, . An example of a recursion relation which is not precisely lacunary 
yet satisfies this last condition is 
(14) 

[k/2] 

\ = */2)( 2f ; *) + k (2
k

k) £ (-)% (2
k

k)(l/(2k - 2D) + E BrBg 
r=0 N ' 0 < r , s ^ [ k / 2 ] 

X ( 2 r , 2s , 2k 2 - k 2 r ( 2k - 2 s ) < 1 / ( 2 k " 2 r " 2 s " « > • 

which can be proved [11] by repeated integration of the Four ier se r ies for (n - x)/2 and then 
using ParsevaTs Theorem on the result . 

F rom (2) above, we have the identity 

(15) (d /dx) (x( l - (x/2) cot (x/2)) J = x2/4 + ( 1 - (x/2) cot (x/2))2 . 

Hence, we extract 
[k /2] 

£ 2g(r)(S) (16) (2k + l)Bk = £ 2^ '^ ; jBrBk_ r , 
r=l 

where 
M = 1 if r < [ k / 2 ] o r r = [k /2 ] , k odd , 

g i r ; J 0 if r = [k /2 ] , k even . 

We observe that this "quasi-convolution" recurrence involves only positive numbers; hence, 
beginning with 

(17) B t = 1/2-3 , 

(18) B2 = 1/2-3-5 , 
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(19) B3 = 1/2-3-7 , 

(20) B4 = (l/2-34-5)(22-5 + 7) = 1/2-3-5 , 

(21) B5 = (l/2-33-ll)(22-5 + 7 + 2-32) = (5/2-3-11) , 

(22) 
B6 = (l/2-33-5-7-13)(23.52.7 + 2-5-72 + 22-5-7-ll + 72-l l + 22.32-5-7 

+ 2-32-5-ll) = 69l/(2-3-5-7-13) , 

B7 = (l/2«35-52)(23-52-7 + 2-5-72 + 22-32-5-7 + 22-5-7-ll 

(23) + 72-l l + 2-32-5-ll + 22-5-7-13 + 72-13 + 2-32-7-13 

+ 22-5.11.13 + 7.1M3) = 7/(2-3) , 

B8 = (l/2.32-5.17)(25-3.52-7 + 23-3-5-72 + 24-33-5-7 

+ 24-3-5-7-ll + 22-3-72-ll + 23-33-5-ll + 24-3-5-7-13 

+ 22-3-72-13 + 23-33-7-13 + 24-3-5-ll-13 + 22-3-7-11-13 

(24) + 25-32-52-7 + 23-32-5-72 + 24-34-5-7 + 24-32-5-7-ll 

+ 22-32-72-ll + 23-34-5-ll + 25-32-5-13 + 23-32-7-13 

+ 24-34-13 + 24-52.ll-13 + 22-5-7-ll-13 + 22-5-7-ll-13 

+ 72-ll-13) = 3617/(2-3-5-17) . 

By induction, we express the Bernoulli number B, by 

_ c(k) 

(25) Bk = n pa(pjk) E n pb ( p j r , k ) • 
p<2k+2 r= l p<2k 

Where the products are over the pr imes less than 2k + 2 and 2k, respectively, a(p,k) is 
an integer (possibly negative) and b(p , r ,k) i s a non-negative integer. The number c(k) of 
te rms in the sum clearly possesses the recurrence 

[k/2] 
(26) c(k) = J^ c ( r ) c ( k " r) ' 

r= l 

with initial condition c(l) = 1. Kishore [12], [13] has used this technique to develop anal-
ogous structure theorems for Rayleigh functions [14], [15]. 
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3. DIVISIBILITY STRUCTURE OF THE BERNOULLI NUMBERS 

We first cite the well-known [16], [17] 
Theorem 2. (Von Staudt-Clausen). If B, = P, /Q, are the Bernoulli numbers for 

k = 1, 2, 3, ••• and ( P . , Q, ) = 1, then 

(27) Q . = | | p , 
K p-lj 2k 

where the product is over all pr imes whose totients divide 2k. 
This theorem completely character izes the Bernoulli denominators; hence, questions 

of divisibility center around the numerators P. . A sufficient condition on divisors of P, 
i s given in the following [16, p» 261] 

Theorem 3. If p w | 2k, p w + 1 | 2k , p - l | 2k , then p w | P k -
The proof of this theorem follows from a congruence of Voronoi 

N - l 
(28) (a 2 k - l ) P k = (-)k"12k a 2 k _ 1 Q k ] P s 2 k _ 1 [sa/N] (mod N) 9 

s=l 

I 2k 
where (a,N) = 1 and N is any integer greater than one. Clearly if i n 2k, (a - 1)P, = 
0 (mod p ) and we may select a to be a primitive root g of p w ( i .e . , if o> = 1, g a l -
ways exists: if (x) > 1 and gp~ ^ 1 (modp 2 ) , take a = g; if g = 1 (modp 2 ) , take 
a = g +p ) . 

Equation (28) is a type of congruence used recently [18], [19] to investigate certain 
divisors of Bernoulli numerators . Specifically, those pr imes p such that 

(29) p > P 1 P 2 P 3 - - - P ( p _ 3 ) / 2 

a re called regular pr imes andKummer [20] proved that for these p r imes , Fermat ? s inequal-
ity, x p + y p fi z , holds for all nonzero integers x, y and z. We l is t a number of con-
gruences of the Voronoi type. 

(30) S s ^ 1 = ( 2 P _ 2 k - l ) ( 3 P " 2 k - 2P" 2 k - l ) ( - ) k B k / 4 k (modp) 
p /6<s<p /4 

with [16, p. 268], p > 35 p - l | 2 k 

(3D E s2k-X
 + J] s 2 k _ 1 - (-)k(6P_2k " sP_2k " 2P"2 k + DBk/4k (mod p) 

p /6<s<p /5 p /3<s<2p/5 
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with [19, p. 27] , p > 7, 2k < p - 1.. 

(32) J^ s 2 k _ 1 s ( - ) k (2 P ~ 2 k - 1 - l ) (3P- 2 k - l ) B k /2k (mod p) 
p / 6 < s < p / 3 

with [ 2 1 ] , p > 7, 2k < p - 1. 

(p-D/2 
(33) J^ (p - 2r)2 k = p22k~1Bk (mod p3) 

r= l 

with [22] , 2k £ 2 (mod (p - 1)). 

(34) b a ( p " 1 ) f lb p " 1 - l ) j = 0 (mod p j _ 1 ) 

with [23] , p an odd pr ime, a > 0, j > 0, a + j < p - 1. 
F rom reflections on the divisibility propert ies of the binomial coefficients, it has been 

shown [24] that 

(35) 2Bk = 1 (mod 2 r + 1 ) , for k > 1, 2rJ 2k, 2 r + 1 J2k . 

Also [ 2 5 ] , 

(36) 2B k = 1 (mod 4), k > 1 , 

and [26 ] , 

(37) B k s 1 - (1/p) ( m o d p r ) , for p > 2, (p - l ) p r | 2k, p r + 1 [ 2 k . 

A more elaborate resul t [2] i s 

(38) 30B 2 k = 1 + 6 0 0 | k 2 1 | ( m o d 2 7 0 0 ° ) • 

The las t depends upon special identities such as 

(eX - l ) " 1 - ( e 5 x - I ) " 1 = (cosh (x/2) •+ cosh (3x/2))cosh (5x/2) . 

48 APPROACHES TO CONJECTURE 1 

M i l n o r f l , p. 966] asked whether o r not 
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(39) 8(2k) l / (2 2 k _ 1 - l ) B k £ 0 (mod 1) . 

2k-1 That this is true for k > 2 is c lear by remarking [27] that 2 - 1 possesses a p r imi -
tive divisor q, such that q = 1 (mod 2k - 2). 

In part icular , q > 2k + 1 and q must occur in the denominator of the fraction in (39). 
We naturally ask whether o r not a pr ime q > 2k + 1 always exists such that 

Q J 2 2 k - 1 - l and q ^ - l . 1 ( q ^ 2 - 1 - 1, fa. fa_r . 

with k /3 < r < k /2 . This suggests 
i 2k- l Lemma 1. If q 2 - 1 is primitive and regular , then Conjecture 1 is true for k. 

We consider r = k/2 or (k - l ) / 2 , k > 3. Since q > 2k + 1 and qf B. for i< 
(q - l ) / 2 , q j ^ , if k is even and q J ^ B ^ if k is odd. Also [ 2 8 ] , q j ^ - 1, j < 2k - 1 . 
Another natural question i s , since Fe rma t ' s Last Theorem is true for [29] pr imes of the 

a form 2 - 1, a re these numbers and their large factors also regular? Alas, 

233JB42, 233J229 - 1 . 

As an example of the theorem, k = 15, 2k - 1 = 29; 1103| 229 - 1, yet 1103 is regular; 
the neares t i r regular pr imes are 971 and 1061. Also 339l| B1116, 339l| B1267 and 339l| 2113 

- 1, but 3391|B2$B29 so that i r regular p r imes may be primitive and still satisfy conjecture 
1. Similarly for 263| 2131 - 1 and 263| B50. These remarks handle cases k = 57, 66. The 
number of primitive pr imes is infinite, so is the number of i r regular pr imes [30] ; Kummer 
conjectured that the number of regular pr imes is infinite. Present tables show that known 
regular pr imes are more numerous than i r regular pr imes . The intersection of these p r imi -
tive and regular pr ime se t s , though nonempty, i s unknown. It is interesting to note in this 
connection that 

(40) 2 2 k " 
r= l 

which for 2k - 1 prime is a relation between Mersenne [31] numbers and Bernoulli numbers. 
4k- l We might enjoy having (2 - 1, B, ) = 1, for the case of the (8k - 1)-sphere; but 

(227 _ 1, B T ) = (2111 - 1, B28) = 23 - 1, 

and a s imilar thing occurs whenever 3 4k - 1, 7 2k; likewise, if 5| 4k - 1, 31 2k, e. g . , 
( 2 4 9 5 - l , B 1 2 4 ) > 3 1 . 

Another approach to (39) is to seek a large (greater than 2k) prime factor of B, and to 
apply i ts existence to Conjecture 1. However, there does not appear to be in the l i terature 



1973] DIFFERENTIABLE STRUCTURES ON (4k - D-SPHERES n 

any theorem (other than a direct calculation [32 ] proving the existence of a large prime di -
visor of B. Equation (25) suggests that if the b(p, r , k) numbers behave appropriately, 
the sum in (25) would be the source of large factors; for the f irst few cases the sum has a 
number of small factors (i. e. , equations (17)-(24))„ A very general and related problem is 
whether or not sums of the type 

c(k) 
(41) J ] J]*" pHtP.r.k) 

r * l p<2k 

with the function n(ps r , k) behaving similarly to the b(p, r , k) possess large factors. It 
is known 33 that for sums of type (41) where n(p, r , k) ^> b(p, r , k) (inequality in a rough 
distribution sense of the density of pr imes being greater in one than the other) large factors 
a r i se . One must proceed with considerable care because of the copious factors [34] of a 
sum such as 

(42) W n V n(k - 1) \ / nk \ 
2Lr\ a i» •"•» a k / \ n - al f ••• , n - a k y \ n , • • • , n / 

where the sum is over the partitions 

k 

E ai = n • 
i=l 

Rather than digging a prime out of P. , we recognize the obvious 
Lemma 2. For m , n arb i t ra ry positive integers, such that m/n < 1, then there ex-

i s t s a prime p such that p |n/ (m,n) and p | p / ( m , n ) . 
We write for integers r G (k/3, k/2] , k > 3, 

(43) ( * ) ( 2 2 r - X - D ( 2 2 k 2 r " X - l ) B r B k _ r / ( 2 2 k - 1 - l )Bk 

(44) = (ifj ( Q t / Q A _ J ( 2 2 1 " - l)(22 k-2 r"1^ l)PT.Pt.T./(22k-1 - DP k / v V * k - r M " ~ ± M* ^ r ' k - r ' ^ 1 ~ A ' "k 

r J k - r 
/ 2 k \ 0(p ,k) -0(p , r ) -0(p ,k- r ) ( 2 2 r - l _ 1 ) ( 2 2 k - 2 r - l _ 1 ) p p 

W D<2k+2 r k 

(45) 
p<2k+2 

where 
(46) 0(p,k) = 1 if (p - l)| 2k and zero otherwise 

(47) 2 2 k _ 1 - 1 = MkM^ , Mk = ^ c 2 L p ^ , k ) . Mk larges t possible, 
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and 
(48) P k = N k N k ' N k = ' ' P ^ P , k \ N k la rges t possible. 

Therefore, we have the following 
Lemma 3. If 

(49) MkNk < 0 . 2 6 ( j ) . Q k / Q r Q i E _ r 

for some integer r E (k/3, k / 2 ] , then Conjecture 1 i s t rue. 
F rom (3), 

(50) B r B k - r / B k = ( S ) 2 «2r ) J (2k - 2r)/f(2k) < j / V g r ) ' 

In fact, [35], for k even, 

(51) £2<W/£(2k) = 2 2l/(n) ^ ' 
n=l 

for î (n) equal to the number of distinct pr ime factors of n. 
By hypothesis 

m / n = ( 2 2 1 - 1 - l ) ( 2 2 k - 2 r - 1 - D P ^ / l 
(52) 

"Pk 

A (J)1 %%-* 4 M k N k 2r Q A - r / Q k
< X 

But n has no prime factors less than 2k and hence none less than 2(k - r) (whether 2k + 1 
is pr ime or not, n has no factors less than 2k + 2), so by Lemma 2 there exists some 
prime greater than 2k, which provides a non-trivial bound for Conjecture 1. Also, if 2k -
1 is p r ime , M^ = 1; in general , for say n = 2k - 1, an easily refined inequality i s M, 
< n 2 ( ^ n ) + 2 " with cp Euler ! s totient function. 

Since for relatively small k, discovery of a large prime divisor of P. could require 
more than 1038 centuries with our present technology, Lemma 3 presents itself as a most 
opportune calculational device. Using this lemma we have shown Conjecture 3 to be true for 
integers k E (3, 265]. The details of this calculation, which appear in the appended tables, 
material ly suggest the truth of the hypothesis of Lemma 3. These calculations make use of 
congruences of type (28), which gives necessary conditions for all divisors of P, , conditions 
which depend upon propert ies of the sum 
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p w - l 
(53) J ? s 2 k _ 1 [ s a / p w ] • (mod p") , 

s=l 

for a some primitive root of p (a complication can ar ise here because p = 35119 which 
satisfies 2P~ = 1 (mod p2) f has a Kummer i r regular i ty of 2). 

Of (53), the tables present empirical evidence, the most complete to date; the more 
valuable conceptual information in the form of an upper bound inequality on N, , for exam-
ple , would be welcome knowledge at this point. 
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