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INTRODUCTION 

One of the early delights a neophyte in the study of Fibonacci numbers experiences may 
be an encounter with some elementary summation propert ies such as 

iL> F i Fn+2 -1 9 

i=l 

As soon as his curiosity is aroused, he may wish to investigate summations which "skip" a 
constant number of Fibonacci numbers , for instance the problem of obtaining a formula for 
the sum of the first n Fibonacci numbers of odd position indexe 

But — as has often been observed — mathematicians are like lovers; give them the l i t -
tle finger, and they will want the whole hand. Can one find a relationship which spells out 
the sum of any finite Fibonacci sequence whose subindices follow the pattern of an arithmetic 
progression? 

A SUMMATION THEOREM (Theorem 1) 

Seeking a pattern for the sum of a number of equally spaced Fibonacci numbers means 
a concern with 

y ^ F „ , (n. = ki+r) , 
i=o * 

r is a non-negative integers whereas k is a natural number. 
Let us use the Binet formula 

a11 - b n .., 1 + «sT5 , , 1 - NT5 F = — with a = -—7T— and b = ^ . 
</5 2 2 

We also note that ab = - 1 . The n Lucas number, L , is L = a + b . Then 
n n 

2X 
i=0 X 

63 
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becomes: 

n 
-±-Y (aik+r- . ik+r x 

- b ) = 
- _L 

45 
' r a ( n + 1 ) k - 1 

a - k -
a - 1 

h r b ( n + 1 ) k - 1 
b k - l 

[ a ( n + l ) k + r _ ^ k ^ ^ n + l ^ r ^ r ^ k ^ 

Nf5[ ( - l ) k + 1 - L k ] 

Performing the indicated operations and again employing the Binet formula, we are ready to 
give the sum of n Fibonacci numbers beginning with F . The sequence continues equally 
spaced such that (k - 1) Fibonacci numbers are left out from any one t e rm to the next* 

Theorem 1. 

f F <-!> V l ) k + r + (-l>min(k'r)-%r_kl ~ W + *r 

t k(i"1)+r = ("l>k + 1 - \ 

where k is any natural number and r any non-negative integer. The number t is defined 
by: 

, _ \ 0, when r < k 
I 1, when r > k 

ttentio 
Since F« , , vanishes for r = k9 t need not be defined in this case. r - k | 

Attention should be drawn to the fact that we may res t r i c t r to the condition 0 < r < k 
by the 

Reduction Formula: (2) 
If r = r (mod k), i. e. : r = ak + r where a is a natural number and 0 < r < k9 

then 
n n 

2L» F ( i - l )k+r = 2 ^ F (a+i- l )k+r 
i=l i=l 

n+a a 

= 2^ F ( i - i )k+r " JLS F ( i - l )k+r 9 

i=l i=l 

While the restr ict ion on r" is useful for reduction purposes, it is not a necessary condition 
for relationship (2). 

Special Cases of Theorem 1. 
We notice that the result of our summation involves an expression which combines no 

more than four t e rms . Thus9 this relationship would be quite helpful whenever n i s "fairly 
l a r g e . " For r = 0, the special case 
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(3) y F = ("1} Fnk + Fk - F(n-H)k 
tl M ^ + 1 - L k 

may mer i t attention. 
It is evident that Theorem 1 embraces the basic elementary summation formulas of 

this kind0 Obviously, k = 1, r = 0 yields: 

i=l 

which is the formula we previously quoted for the sum of the f irs t n Fibonacci numbers. 
However, it is aesthetically satisfying that the summation formulas for the f irs t n 

Fibonacci numbers of odd indices and those of even indices also become special cases of our 
pattern. Thus, by letting k = 2 and r = 0, we get 

n 

2i ~ "2n+l 2-J F 2 i F 2 -"« 1 

i=l 
whereas r = 1 yields: 

n 

- X) F2i-1 = F2n ' 
i=l 

If one relationship combining the two cases were required, Theorem 1 — for k = 2 and r = 
0 or 1 — becomes: 

n 

2~J F 2 ( i - l )+ r = F2n+2-2 " ^ F 2 - r " F r ' 
i=l 

or , more simply: 
n 

<4> X F2(i-1)H 
i=l 

)+r F 2 n + r - l + r ~ 1 

It may be instructive to check other cases of small "skipping numbers'1 k. Owing to 
reduction formula (2), the condition r < k does not limit the generality of the resul ts . 

For k = 3 we obtain 

n 2 F Q _ 1 - ( - l ) r F 0 - F 
3n+r-l ' 3-r 2L F3(i-1)H - r r 

. )+r 
i=l 
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which may also be stated as 

n 

+r (5) Z F3(i-1) 
i=l 

and, for k = 4, we have 

F3n+r-l " ir " !| 

2 F 4 n + r - 3 + F 4n+r -2 " ^ ^ - r _ F r 
<L*t A 4 ( i - l ) + r 
i = l 

or, alternatively: 

n 
(6) E F4(i-l)+r = 

i=l 

5 

2n-2 2n+r |_ 2 J ' 

These equivalences, relationships (5) and (6), may easily be verified by straight sub-
stitution of the few r-values to which we are restr ic ted. All of these formulas can, however, 
readily be established either by using the Binet formula, or e lse , employing mathematical 
induction. They were stated here merely as a mat ter of interest since none of them seem 
too obvious. 

Two further observations may be mentioned. 
We might wish to impose the condition r = k on Theorem 1. Then 

Ct\ V F - ("X) F n k - F(n+l)k + F k 

Clearly, the summation formula for the f irs t n Fibonacci numbers of even subindex is a 
special case of this. 

It may also be of interest to note that on the basis of Theorem 1, L, divides into all 
sums of our kind, provided k is odd, i . e . , the number of Fibonacci numbers "skipped over" 
in our summation is even. If this number were odd, (2 - L, ) would be a divisor of our sum. 

AN EXPANSION THEOREM (Theorem 2) 

But hasnft Jacobi advised us: "Man muss immer umkehren" (one must always turn 
around)? Thus — having obtained summation resul ts as expressions involving Fibonacci 
numbers — we may now experiment with an inversion and pose the problem: Can a Fibonacci 
number be expanded into a ser ies reminiscent of an expansion for the n power of a binomial? 

Par t ly analogous to Theorem 1, and pr imari ly for the sake of developing some notions, 
we symbolize our Fibonacci numbers F as F, , where all le t ters represent non-negative 
integers. 

The proposed expansion reads: 
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Theorem 2. 
k-1 

•n Z - r l i I m r 
i=0 > / 

m+lFm-f-r-k+i-HL> ( n = km + r) 

In our proof j we use mathematical induction on n. Symbolizing Theorem 2 by R(n), 
we readily verify R(n) for the first few natural numbers. Now we need to show that the 
correctness of R(s - 1) and of R(s) implies correctness of R(s + 1), where s represents 
any natural number. This means that we investigate whether 

/ k - 1 \ k - i - i i 
I i I m n 

/ k - A F k - i - i F i 
I i I m i 

T F + F 1 
' m+l L m+r-k+i m+r-k+i+lJ 

equals 

' ' J. F 
m+l m+r-k+i+2 

However, the iterative definition of Fibonacci numbers assures the correc tness of this equal-
ity and, hence, completes the proof. 

As an illustration, we might wish to expand Fn by letting m = 3 and r = 2. We 
asser t that 

' --zM'f'i 'w 
i=0 X f 

which is easily verified. 
Special Cases of Theorem 2. 
Some special cases might be pointed to. Considering Fibonacci numbers with even 

subindex, Theorem 2 reduces to: 

£ - 1 
2 

» = £(^)2': (8» F- - M 2 J 2 Vi„/2)+i 
i=0 

But those of odd subindex may be expanded on the basis of 

n-3 
2 / n - 3 2 / n - 3 \ 

n = S\ t P F(9-n)/2+i (9) F. 
Li 

i=0 

A Corollary of Theorem 2. 

We propose a corollary of expansion formula 2 (Theorem 2) which gives a prescribed 
number of terms for the expansion. Let the symbol a stand for that number. In our 
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condition n = km + r we stipulate that m = 1 and k = a, and we obtain: 
Corollary of Theorem 2. 

a-1 
(10) F M = "n " zL* 1 i lFn+2(l-a)H 

i=0 ^ / 
)+i ' 

i=0 ^ / 
where 

2 < a < ^ i . 

Special Cases of the Corollary; 
The following two special cases seem worth mentioning. We desire to let a be the 

largest possible number. 
Case 1: 
If n is even, a = n /2 is chosen. Then 

2 x 

(ID FM = > , ( 2 7 ^ J F . + 2 • -sp; 1 ) 
i=0 X / 

and there are n /2 t e rms in the expansion. 
Case 2: 
T£ • J J n + 1 
If n is odd, a = - , 

n -1 
2 

(12) F„ = > A 2 }F.+1 

i=0 V i / 

and the expansion has —— te rms . 
To i l lustrate , let us expand F2i into a five-term se r ies . Then n = 21. Using re la-

tionship (10) and letting a = 5, we have: 

i=0 x / 
13+i J 

which is correct . For the maximum number of t e rms in the expansion we would designate a 
as being 11 and use (12). Then 

! ( " ) 

10 

fioU 
i+1 ' 

F21 = > . I \ 1 F 
i=0 

a relationship which can also be easily verified. 
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BACK TO ANOTHER SUMMATION THEOREM (Theorem 3) 

Once again, we might "invert. f f Our summation theorem (Theorem 1) gave us an ex-
pansion involving Fibonacci numbers as the result of the addition. Now let us give a summa-
tion which resul ts in one Fibonacci numbere This problem may possibly use Theorem 2 to 
the best advantage. 

Starting with a summation involving Fibonacci numbers of prescribed indices, can we 
predict the resulting Fibonacci number? Again recalling Jacobifs advice, we reverse the ex-
pansion of a given Fibonacci number to a sum. Now designate a sum which leads to a p r e -
dictable Fibonacci number. Symbolize m by u, and u + r - (n - r ) /u + 1 by v. Then 
r == v - l - u + k and Theorem 2 becomes: 

Theorem 3. 

k-1 

E / k - l \ k - l - i i 
I i J u u+1 v+i (k-1) (u+1) +v 

for any arbi t rar i ly chosen natural numbers u and v. The number k may be any integer 
grea ter than or equal to 2. 

To il lustrate this summation idea, we try a summation involving F 4 and FT. Here 
we let u = 4, and v = 7, and get: 

sfvy-1-1*1* 
i=0 \ ' 

7+i " 

We predict F^., ? as our result which is correct . 

Pre-assigning the Fibonacci Number Resulting from Summation Theorem 3; 

Formula 3 is a method for a summation which uses prescribed Fibonacci numbers and 
predicts a Fibonacci number as the result . What about assigning the resulting Fibonacci 
number without prescribing Fibonacci numbers involved in the summation? 

This summation, not necessar i ly unique, can be had by considering two cases . 
Case 1. The Fibonacci number to be attained has odd subindex n. We choose u = v 

= 1, and have 

k-1 

s(k ; 1h <13> > A 7 ) F i + 2 = * * „ ! 

Case 2. We wish to obtain a Fibonacci number of even subindex. For this purpose we 
let u and v take on the values 1 and 2, respectively* Here: 
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k-2 

<14> 2,1 i Fi,2 = F2k-
1=0 X / 

Obviously, the number of t e rms in these summations will be (n + l ) / 2 for odd sub-
indices n, and n/2 for even ones. We real ize , however, that our choices for u and v 
have forfeited the ability to discern the powers of F and F which characterize the te rms 
of Theorem 3. 

Pre-Assigning the Fibonacci Number Resulting from Summation Theorem 3 as well as the 
Number of Te rms in the Summation, and Retaining Generality. 

Finally, we prescr ibe the resulting Fibonacci number F as well as k, the number 
of te rms in the summation. Moreover, to avoid the difficulty encountered above, exclude the 
somewhat trivial cases which involve FA = F2 = 1 among the summation t e rms . We im-
pose the condition: u ,v > 3. Fur thermore , the iterative definition of Fibonacci numbers: 

2-J *n+i n+2 
i=0 

inherently provides a summation of two t e rms resulting in a Fibonacci number (even though 
the summation is not of our general type). Therefore, impose the condition: k > 3. Then, 
for all n > 4k - 1; i. e. , for all n > 11, we can do justice to our data by assigning appro-
priate values to u and. v such that 

(15) n = (k - l)(u + 1) + v 

is satisfied. Again, no claim is made for uniqueness. 
For example, to obtain F1A through a summation of three t e r m s , the following choice 

proves successful: 

i=0 X ' 
4 F3+i F l l 

For a summation of three te rms for F1 5 , we can already write: 

i=0 ^ ' i=0 i=0 ^ ' 

F = F 
2+i r 15 
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Lack of Uniqueness — Predicting the Number of Different Summations 

Can you foretell the number of different summation representations of our type, each 
having k t e r m s , and leading to the same Fibonacci number F ? Using relationship (15), 
our prediction becomes: 

If set T is defined by 

T = | t : 4 < t < - n ~ 3 

k - 1 

then the numerosity of T, that i s , the number 

(16) m\-
predicts the possible number of different summations of our type5 each having k t e rms and 
leading to the Fibonacci number F . 

To i l lustrate , there will be 52 ten- term summations of our kind leading to F500. We 

would have: 

i=0 X ' i=0 X 7 i=0 X ' 
53 F23+i 

i=0 X ; 

V = F 
4 * 464+i 500 

then V = L , the Lucas sequence, and so (HI) now gives the correc t expression for (9) in 
[Continued from page 62. ] 

thei 

(*). 

(IV) 

Case 2. A + B = 0. We now obtain from (n) 

f(x + c t ) - f(x + c2) _ U 

ci - c2 
n=0 
X TT ^ • 

where U0 = 0, U, = 1, and U n + 2 = P U n + 1 - QU^ Thus for P = 1, Q = - 1 , Un = F n ; 

and for P = 2, Q = - 1 , U = P , the Pell sequence. For m = 1, 2, • • • , we obtain 

from (IV) 

f(x + c f ) - f ( x + cf) • Vmn 

(V) ^r^— = £ — D f(x) • 
n=0 

Remarks. The same ideas in (*) show that the generating function of the moments of 

the inverse operator 

[Continued on page 84. ] 


