$(m=0,1,2, \cdots, n)$, where $F_{-2}=F_{-1}=0$ and F_{j} for each $j \geq 0$ is the j th Fibonacci number (2).

The results in Theorem 2 were suggested to the authors by considering a number of special cases on an IBM $360 / 65$ computer.

REFERENCES

1. R. L. Duncan, "Note on the Euclidean Algorithm," The Fibonacci Quarterly, Vol. 4 (1966), pp. 367-368.
2. O. Perron, Die Lehre von den Kettenbruchen, Vol. 1, Teubner, Stuttgart, 1954.
3. J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, 1939.

LETTERS TO THE EDITOR

Dear Editor:

In the paper (*) by W. A. Al-Salam and A. Verma, "Fibonacci Numbers and Eulerian Polynomials," Fibonacci Quarterly, February 1971, pp. 18-22, an error occurs in (9), which is readily corrected. I will generalize their (4) by defining a general polynomial operator M by
(I)

$$
\operatorname{Mf}(x)=A f\left(x+c_{1}\right)+\operatorname{Bf}\left(x+c_{2}\right), \quad c_{1} \neq c_{2}
$$

where $f(x)$ is a polynomial and A, B, c_{1}, and c_{2} are given numbers. With $D=d / d x$, we note that $M=A e^{C_{1} D}+B e^{C_{2} D}$ so that

$$
\operatorname{Mf}(x)=A \sum_{n=0}^{\infty} \frac{c_{1}^{n}}{n!} D^{n} f(x)+B \sum_{n=0}^{\infty} \frac{c_{2}^{n}}{n!} D^{n} f(x)
$$

or
(II)

$$
A f\left(x+c_{1}\right)+B f\left(x+c_{2}\right)=\sum_{n=0}^{\infty} \frac{W_{n}}{n!} D^{n_{f}(x)}
$$

where $W_{n}=A c_{1}^{n}+B c_{2}^{n}$ is the solution of $W_{n+2}=P W_{n+1}-Q W_{n}$ and $c_{1} \neq c_{2}$ are the roots of $x^{2}=P x-Q$. In (*), Eq. (4) is a special case of (I) with $A=\mu$ and $B=1-\mu$. There are two cases of (II) to consider:

Case 1. $\mathrm{A}+\mathrm{B} \neq 0$. If $\mathrm{A}=\mathrm{B}$, we obtain from (II)
(III)

$$
\mathrm{f}\left(\mathrm{x}+\mathrm{c}_{1}\right)+\mathrm{f}\left(\mathrm{x}+\mathrm{c}_{2}\right)=\sum_{\mathrm{n}=0}^{\infty} \frac{\mathrm{V}_{\mathrm{n}}}{\mathrm{n}!} D^{\mathrm{n}^{\prime}} \mathrm{f}(\mathrm{x})
$$

where $V_{0}=2, V_{1}=P$, and $V_{n+2}=P V_{n+1}-Q V_{n}$. If c_{1} and c_{2} are roots of $x^{2}=x+1$, [Continued on page 71.]

