where s_n is the nth triangular-square number. Likewise, we can compute a formula for the nth triangular-pentagonal number. The result is

$$s_{n} = \frac{(2 - \sqrt{3})(97 + 56\sqrt{3})^{n} + (2 + \sqrt{3})(97 - 56\sqrt{3})^{n} - 4}{48}$$

This agrees with a result recently published by W. Sierpiński [4].

I am thankful to Dr. D. W. Bushaw, whose suggestions and encouragement made the writing of this paper possible.

REFERENCES

- 1. G. Chrystal, Algebra: An Elementary Text-Book, Vol. 2, Adam and Charles Black, London, 1900.
- 2. William J. LeVeque, Topics in Number Theory, Vol. 1, Addison-Wesley, Reading, Mass., 1956.
- 3. C. T. Long, "On the Gregory Interpolation Formula," Amer. Math. Monthly, 66 (1959), pp. 801-808.
- 4. W. Sierpiński, "Sur les Nombres Pentagonaux," Bull. Soc. Royale Sciences Liege, 33 33 (1964), pp. 513-517.

[Continued from page 71.]

$$M^{-1} = \sum_{k=0}^{\infty} \frac{m_k^*}{k!} D^k$$

is given by

(VII)

$$\sum_{k=0}^{\infty} \frac{m_k^*}{k!} t^k = 1/(Ae^{c_1 t} + Be^{c_2 t}) .$$

We now note that for Case 2, where A + B = 0, Eq. (VII) does not exist for t = 0, and hence there is no inverse operator M^{-1} . Thus, a sufficient condition for M^{-1} (see (I)) to exist is that $A + B \neq 0$, i.e., Case 1. For $A + B \neq 0$, one readily finds that

(VIII)
$$(A + B)m_k^* = (c_2 - c_1)^k H_k \left(\frac{c_1}{c_1 - c_2} \middle| -A/B\right)$$
,

where $H_{l_{k}}(x|\lambda)$ is the Eulerian polynomial cited in (*).

Many more identities can be quoted. Indeed, for $m, n = 0, 1, \dots$, one has [Continued on page 112.]

84