Likewise, we can compute a formula for the $n^{\text {th }}$ triangular-pentagonal number. The result is

$$
s_{n}=\frac{(2-\sqrt{3})(97+56 \sqrt{3})^{n}+(2+\sqrt{3})(97-56 \sqrt{3})^{n}-4}{48}
$$

This agrees with a result recently published by W. Sierpinski [4].
I am thankful to Dr. D. W. Bushaw, whose suggestions and encouragement made the writing of this paper possible.

REFERENCES

1. G. Chrystal, Algebra: An Elementary Text-Book, Vol. 2, Adam and Charles Black, London, 1900.
2. William J. LeVeque, Topics in Number Theory, Vol. 1, Addison-Wesley, Reading, Mass., 1956.
3. C. T. Long, "On the Gregory Interpolation Formula, " Amer. Math. Monthly, 66 (1959), pp. 801-808.
4. W. Siexpiński, "Sur les Nombres Pentagonaux," Bull. Soc. Royale Sciences Liege, 33 33 (1964), pp. 513-517.
[Continued from page 71.]

$$
M^{-1}=\sum_{k=0}^{\infty} \frac{m_{k}^{*}}{\mathrm{k}!} D^{\mathrm{k}}
$$

is given by
(VII)

$$
\sum_{k=0}^{\infty} \frac{m_{k}^{*}}{k!} t^{k}=1 /\left(A e^{c_{1} t}+B e^{c_{2} t}\right)
$$

We now note that for Case 2, where $A+B=0$, Eq. (VII) does not exist for $t=0$, and hence there is no inverse operator M^{-1}. Thus, a sufficient condition for M^{-1} (see (I)) to exist is that $A+B \neq 0$, i.e., Case 1. For $A+B \neq 0$, one readily finds that
(VIII)

$$
(A+B) m_{k}^{*}=\left(c_{2}-c_{1}\right)^{k_{k}} H_{k}\left(\left.\frac{c_{1}}{c_{1}-c_{2}} \right\rvert\,-A / B\right)
$$

where $H_{k}(x \mid \lambda)$ is the Eulerian polynomial cited in (*).
Many more identities can be quoted. Indeed, for $m, n=0,1, \cdots$, one has
[Continued on page 112.]

