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The story of the discovery of irrat ional numbers by the school of Pythagoras around 
500 B . C . , and the devastating effect of that discovery on the Pythagorean philosophy is well 
known. On the one hand there was an undermining of the Pythagorean dictum "All is number," 
the conviction that everything in our world is expressible in t e r m s of integers or rat ios of 
integers. On the other hand, many geometric arguments were invalidated. Namely, those 
proofs requiring the existence of a common unit of measurement for any given pair of line 
segments were seen to be incomplete. Credit for the discovery of incommensurables is 
generally accorded to Hippasus of Metapontum. One may read, for example, in the excellent 
t reat ise of Van der Waerden [ 5 ] , the legends of the fate that befell Hippasus for publicizing 
this and other secre ts of the Pythagoreans. A brief and very readable account of these mat -
te rs may be found in Meschkowski [ 4 ] . 

This note concerns itself with the question of how incommensurables might plausibly 
have been discovered. In part icular , it will be seen how a study of the Golden Ratio could 
lead one to stumble onto the existence of incommensurable segments. The basic idea p r e -
sented here is certainly not new and represents only a slight variant of ideas suggested in 
Meschkowski [ 4 ] and a definitive article by Heller [ 2 ] , It is hoped that the presentation 
given here might be of pedagogical value. In part icular , a development along the lines given 
here might serve as a suitable vehicle for a classroom investigation of topics dealing with the 
history of irrat ional numbers or topics involving early Greek geometry and the Golden Ratio. 

We begin by recalling that two line segments are commensurable, that i s , have a com-
mon unit of measure , if each can be subdivided into smaller segments of equal length u (the 
length u being the same for both segments). In this case , if the two given segments have 
lengths a and b, respectively, we have 

(1) a = mu and b = nu 

for some positive integers m and n. Thus, for commensurable segments, we have the ratio 
a /b = m/n is a rational number. Conversely, if we are given two line segments of lengths 
a and b such that the ratio a/b is equal to m/n , where m and n are positive integers , 
then the number u = a /m = b/n will serve as a common unit of measure , so the segments 
are commensurable. Thus commensurable pai rs of line segments are precisely those for 

* Revised version of a lecture given before the Fibonacci Association in San Francisco on 
April 22, 1972. 
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which the ratio of the lengths is a rational number, and incommensurable pa i rs are those for 
which the ratio is an irrat ional number. 

The best known example of an incommensurable pair of segments i s given by a side and 
diagonal of a square. In a square, the ratio of diagonal length to side length is \/~2, which 
an easy number theoretic argument (as given in Book X of Euclid's Elements) shows to be i r -
rational. But historical evidence indicates that the discovery of incommensurables came 
about in a purely geometric fashion, and the known geometric proofs that diagonal and side of 
a square are incommensurable seem to have the nature of being concocted after the initial 
discovery was well known. The reader will find the standard geometric argument in Eves 
[ 1, p. 60]. One would like to see a pair of line segments whose incommensurability can be 
more intuitively grapsed in a purely geometric manner. This is where the Golden Ratio en-
gers the scene. 

The Pythagoreans were much taken with the propert ies of the regular pentagon, whose 
vert ices are also the vert ices of the Pythagorean symbol of health, the regular five-pointed 
s ta r . 

A B 

Figure 1 

The Golden Ratio is the ratio of the diagonal length of a regular pentagon to the side length. 
Designating this ratio by the symbol <j>, we have from Fig. 1, 

Some simple geometry shows that in Fig. 1, triangle ACB is an isosceles triangle with apex 
angle 36p and base angles 72° each. Such a triangle we shall call a Golden Triangle. Then 
the Golden Ratio is the ratio of side to base in any Golden Triangle. A property of the Golden 
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Triangle that undoubtedly intrigued the Pythagoreans is that when one draws the bisector of a 
base angle, there appears another smaller Golden Triangle. Thus in Fig. 2, if triangle ACB 
is a Golden Triangle and AD bisects the angle at A, then triangle BAD is also a Golden 
Triangle. 

A B 

Figure 2 

To see why this is t rue, observe in Fig. 2, that Y BAD = Y CAD = 36® and Y A B D = 72°. 
It follows that ^ A D B = 72®, so triangle BAD is indeed a Golden Triangle. In this self-
replicating property of the Golden Triangle l ies the key to the incommensurability of i ts side 
and base. If one next draws the bisector of the angle at D to a point Df on AB, then draws 
the bisector of the angle at Df to a point Dn on BDS and continues this process indefinite-
ly , one obtains an infinite sequence of smaller and smaller Golden Triangles. We shall see 
in a moment how the existence of this sequence contradicts the possibility that the side and 
base of the triangle might be commensurable. 

It will be crucial to our argument to observe that in Fig. 2, AD = CD, which follows 
from the fact that ^ D A C = ^_DCA = 36@, 

How then does one see geometrically that the side and base of a Golden Triangle are not 
commensurable? We might place ourselves in the sandals of an ancient Greek philosopher 
ruminating over a Golden Triangle ACB sketched in the sand. Wondering about a common 
unit of measure of AC and AB, we imagine it i s possible to subdivide AC and AB into 
smaller segments all of the same lengthy say u. Subdividing BC into segments of the same 
length u we obtain an flevenly subdivided'' triangle that might look something like triangle 
ACB in Fig. 3, where all the little segments are supposed to have the same length u. Now 
comes a crucial observation. Suppose we draw the bisector of the base angle at A9 in ter -
secting the opposite side in a point D. What can we say about D? The crucial observation 
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A B 

Figure 3 

is that D must be one of the subdivision points! The reason is simple. Referring to Fig. 2, 
recal l that AB = AD = CD. Thus CD, being equal to AB, must be an integral multiple 
of u, hence D must be a subdivision point. Thus appears a basic revelation: If we have 
any evenly subdivided Golden Triangle, then the bisector of a base angle must strike the op-
posite side in a subdivision point. Figure 4 i l lustrates this, with the bisector AD also 
subdivided. 

Figure 4 
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But triangle BAD is also an evenly subdivided Golden Triangle; hence if the bisector DDf 

o f ) L A D B i s drawn, the point D1 where it s t r ikes side AB must also be one of the original 
subdivision points, as indicated in Fig. 5. 

Figure 5 

Repeating the process on the evenly subdivided Golden Triangle D'DB, we next see that the 
bisector of V_BDfD must strike BD in one of the original subdivision points Dn. It now 
becomes clear that we can repeat this procedure endlessly, drawing successively angle b i -
sectors DDf, D!Dn, DMDMf, "B

9 striking at each step the different subdivision points Df, 
D n , D n f , ' " . Since at each step of this procedure we strike one of our original subdivision 
points, we have arr ived at a contradiction, there being only finitely many such points. Thus 
we see that an evenly subdivided Golden Triangle is impossible, and hence the side and base 
are not commensurable. 

It is of interest to examine an algebraic proof of the irrationality of the Golden Ratio 0 
that paral lels the preceding geometric argument. We begin by deriving an important equation 
satisfied by 0. Since ACB and BAD are s imilar Golden Triangles in Fig. 2, we have 

, . , BC = AjB = AB AB = 1 
{S) ™ AB BD BC - DC BC - AB f~^T ' 

where we also used the fact that DC = AB and made some minor algebraic adjustments. If 
now we have 0 = m/n , with m , n positive integers , then Eq. (3) implies 

(4) m = , _ 1 = n 
n ^ 0 - 1 m - n ' 
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Since 0 > 1, we automatically have m > n, and defining mf = n and nT = m - n, we 
obtain <f> = mf/nT

s with mf,nf positive integers and m > mf. Repeating the process we 
obtain positive integers m" , nn with </) = m n / n n and m' > m". Repeating the procedure 
endlessly we obtain an infinite decreasing sequence of positive integers m > mf > m" > • • • , 
a contradiction. Hence there do not exist positive integers m9,n such that 0 = m / n , and 
we have proved that 0 is not rational. 

In both the preceding proofs we may avoid the construction of infinite sequences by ap-
pealing to the fact that any nonempty set of positive integers contains a smallest element. In 
the case of our geometric proof, suppose there existed evenly subdivided Golden Triangles. 
With each such subdivided triangle associate the total number of subdivision points. Then 
there i s a smallest such integer N and corresponding evenly subdivided Golden Triangle. 
But then by bisecting a base angle of this triangle we produce an evenly subdivided Golden 
Triangle with l ess than N total subdivision points. This contradiction shows that there ex-
is t no evenly subdivided Golden Triangles. In the case of our algebraic proof of the i r ra t ion-
ality of 0, suppose there existed positive integers m and n such that 0 = m/n . With 
each such representation associate the numerator in. Then there is a smallest such integer 
m for which 0 = m/n . But then Eq. (4) gives </> = n/ftn - n), which is a representation 
with still smaller numerator. The contradiction shows that there is no representation 0 = 
m/n with positive integers m and n. Hence 0 is not rational. 

No discussion of these mat te rs would be complete without mentioning how fromEq. (3), 
or from i ts equivalent 

(5) <t> = i + 1 , 

one may obtain rational approximations to 0 by rat ios of successive Fibonacci numbers , with 
the analogous geometric approximations to a Golden Triangle by integer-sided triangles. 
Having mentioned it, we now leave i t , hoping that any reader unfamiliar with these mat te rs 
will, with whetted appetite, consult the fine book of Hoggatt [3] for a detailed exposition of 
the relationship between geometry and the Fibonacci numbers. 
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