YE OLDE FIBONACCI CURIOSITY SHOPPE

Edited by BROTHER ALFRED BROUSSEAU St. Mary's College, California

Let $S(X^2)_q$ symbolize the sum of the digits of X^2 on the base q. For example, $S(9^2)_5 = S(14^2)_5 = 5$ since $9_5^2 = 311$.

The following is a method for finding q such that $S(X^2)_q = X$ when X is given. For example $S(7^2)_8 = 7$ since $7_8^2 = 61$.

Step 1. List all the factors of X except X itself.

Step 2. List all the factors of X - 1.

Step 3. Multiply each factor of X by one of the factors of X - 1, discarding all products greater than X - 1. The retained products are the ten's digits of the X_{α}^{2} that we seek.

Step 4. The unit's digits can be obtained by simple subtraction of the quantities in three from X.

Step 5. q can now be computed by simple arithmetic.

Example. $S(21^2)_{q} = 21$. Find all values of q.

Step I:				1	3	7		
Step II:		1	2	4	5	10	20	
Step III:		1	2	4	5	10	20	
		3	6	12	15			
		7	14					
Step IV:	1(20)	2(19)	4	(17)	5(1	L6)	10(11)	20(1)
	3(18)	6(15)	1	2(9)	15	(6)	7(14)	14(7)

The quantities in parentheses are the unit's digits.

Step V: For example, for 5(16), 5b + 16 = 441 in base ten so that b = 85 expressed as a base ten number. The bases taken in order are

421	211	106	85	43	22
141	71	36	29	61	31

The problem is: Why does this method work?.

Harlan L. Umansky, Emerson High School, Union City, N.J.

* * *

If eleven alternate terms of any Fibonacci sequence are added and divided by $L_{11}(199)$, the result is the middle term of the group of eleven terms added together.

Example. Using the series beginning 1, 4, \cdots ,

157 + 411 + 1076 + 2817 + 7375 + 19308 + 50549 + 132339 + 346468 + 907065 + 2374727 = 3942292

Dividing by 199 gives 19308.

Brother Alfred Brousseau, St. Mary's College, California

332