YE OLDE FIBONACCI CURIOSITY SHOPPE

Edited by
BROTHER ALFRED BROUSSEAU
St. Mary's College, California
Let $S\left(X^{2}\right)_{q}$ symbolize the sum of the digits of X^{2} on the base q. For example, $S\left(9^{2}\right)_{5}=S\left(14^{2}\right)_{5}=5$ since $9_{5}^{2}=311$.

The following is a method for finding q such that $S\left(X^{2}\right)_{q}=X$ when X is given. For example $\mathrm{S}\left(7^{2}\right)_{8}=7$ since $7_{8}^{2}=61$.

Step 1. List all the factors of X except X itself.
Step 2. List all the factors of $\mathrm{X}-1$.
Step 3. Multiply each factor of X by one of the factors of $\mathrm{X}-1$, discarding all products greater than $X-1$. The retained products are the ten's digits of the X_{q}^{2} that we seek.

Step 4. The unit's digits can be obtained by simple subtraction of the quantities in three from X .

Step 5. q can now be computed by simple arithmetic.
Example. $S\left(21^{2}\right)_{q}=21$. Find all values of q.
Step I:
$\begin{array}{lll}1 & 3 & 7\end{array}$
$\begin{array}{lllllll}\text { Step II: } & 1 & 2 & 4 & 5 & 10 & 20\end{array}$
Step III: $\quad 1 \begin{array}{llllll} & 2 & 4 & 5 & 10 & 20\end{array}$
$\begin{array}{llll}3 & 6 & 12 & 15\end{array}$
$7 \quad 14$
Step IV: $\quad 1(20) \quad 2(19) \quad 4(17) \quad 5(16) \quad 10(11) \quad 20(1)$
$3(18) \quad 6(15) \quad 12(9) \quad 15(6) \quad 7(14) \quad 14(7)$
The quantities in parentheses are the unit's digits.
Step V: For example, for $5(16), 5 b+16=441$ in base ten so that $b=85$ expressed as a base ten number. The bases taken in order are

421	211	106	85	43	22
141	71	36	29	61	31

The problem is: Why does this method work?
Harlan L. Umansky, Emerson High School, Union City, N. J. * *

If eleven alternate terms of any Fibonacci sequence are added and divided by L_{11} (199), the result is the middle term of the group of eleven terms added together.

Example. Using the series beginning 1, 4, \cdots,
$157+411+1076+2817+7375+19308+50549+132339+346468+907065+2374727=3942292$

Dividing by 199 gives 19308.
Brother Alfred Brousseau, St. Mary's College, California

