AN INEQUALITY IN A CERTAIN DIOPHANTINE EQUATION

D. A. BUTTER

I.T.T. Lamp Division, 330 Lynway, Lynn, Massachusetts 01901

The Diophantine Equation
(1)

$$
x_{1}^{p}+\cdots+x_{n}^{p}=y^{p}
$$

where p is an odd prime number $>_{1}, \mathrm{n} \geq 2$ and $1 \leq \mathrm{x}_{1} \leq \ldots \leq \mathrm{x}_{\mathrm{n}}$, is known to possess general solutions for $n=2, \mathrm{p}=2$; $\mathrm{n}=3, \mathrm{p}=3$; for other values of n and p , no general solutions are known, although computer searches for solutions of such equations can easily be carried through by assigning a value to y and n and then allowing the corresponding x^{\prime} s to take all values from $x_{1}=\cdots=x_{n}=1$ to $x_{1}=\cdots=x_{n}=y-1$; in each case, different primes p are tested to see whether Eq. (1) is satisfied. The labor involved, however, is drastically reduced by realizing that for a given n and y possible primes p which can satisfy Eq. (1), have an upper bound, above which no solutions are possible. This statement is a consequence of examining properties of the function ψ which is defined by

$$
\begin{equation*}
\psi=\left(x_{1}+\cdots+x_{n}\right) / y \tag{2}
\end{equation*}
$$

where y is given by Eq. (1), subject to the restrictions stated above. The relevant property of ψ is given by the following:
$1-\frac{1}{\mathrm{p}}$ and below by $(1+2 p / y)$ or 1 depending on whether the solution to Eq. (1) are integers or not, respectively.

Proof of Theorem. From elementary calculus

$$
\mathrm{d} \psi=\sum_{i=1}^{m} \frac{\partial \psi}{\partial x_{i}} d x_{i}
$$

and ψ has a turning point when

$$
\frac{\partial \psi}{\partial x_{i}}=0 \quad(1 \leq i \leq n)
$$

The conditions

$$
\frac{\partial \psi}{\partial x_{1}}=0 \quad \text { and } \quad \frac{\partial \psi}{\partial x_{2}}=0 \quad(i \neq 1)
$$

result in the equations

$$
\begin{equation*}
x_{1}^{p}+\cdots+x_{i}^{p}+\cdots+x_{n}^{p}-x_{1}^{p-1}\left(x_{1}+\cdots+x_{i}+\cdots+x_{n}\right)=0 \tag{3}
\end{equation*}
$$

$$
x_{1}^{p}+\cdots+x_{i}^{p}+\cdots+x_{n}^{p}-x_{i}^{p-1}\left(x_{1}+\cdots+x_{i}+\cdots+x_{n}\right)=0 .
$$

Subtracting Eq. (3) from Eq. (4) gives the condition for a turning point as
(5)

$$
x_{1}=x_{2}=\cdots=x_{n} .
$$

$$
\mathrm{n}^{1-\frac{1}{\mathrm{p}}}
$$

From which we deduce that $\max (\psi)=n^{1-\frac{1}{p}}$. The lower bound of x depends on whether the x^{\prime} s are restricted to integers. Thus if the x^{\prime} s are non-integral, then we note that $y^{p}=$ $x_{1}^{p}+\cdots+x_{n}^{p}<\left(x_{1}+\cdots+x_{n}\right)^{p}$ so that $1<\psi$. If the $x^{\prime} s$ are integers only, we use the little Fermat theorem $x_{i}^{p} \equiv x_{i}(\bmod p)$. But since $\left(x_{i}^{p}-x_{i}\right)$ is even and p is odd by hypothesis, it follows that $x_{i}^{p} \equiv x_{i}(\bmod 2 p)$ and hence using Eq. (1) we deduce that $x_{1}+\cdots$ $+x_{m} \equiv y(\bmod 2 p)$ from which it follows immediately that $y+2 p \leq x_{1}+\cdots+x_{n}$. The case of $p=2$ deserves special attention. Using the same reasoning as above, we obtain the inequality:
(6)

$$
\mathrm{y}+2 \leq \mathrm{x}_{1}+\cdots+\mathrm{x}_{\mathrm{n}} \leq \sqrt{\mathrm{n}} \mathrm{y}
$$

Moreover, it is easy to derive solutions for the equation

$$
\sum_{i=1}^{m} x_{i}^{2}=y^{2}
$$

for any n by using the well known general solution for $n=2-i_{\text {. }}$., the identity $(2 a b)^{2}+$ $\left(a^{2}-b^{2}\right)^{2}=\left(a^{2}+b^{2}\right)^{2}$. Thus putting $a=n$, and $b=n+1$, we obtain:

$$
(2 \mathrm{n}+1)^{2}+(2 \mathrm{n}(\mathrm{n}+1))^{2}+(2 \mathrm{n}(\mathrm{n}+1)+1)^{2} .
$$

Now putting $n=m(m+1)$ and using Eq. (6) gives:

$$
\begin{equation*}
(2 \mathrm{~m}+1)^{2}+(2 \mathrm{U})^{2}+(2 \mathrm{U}(\mathrm{U}+1))^{2}=(2 \mathrm{U}(\mathrm{U}+1)+1)^{2} \tag{7}
\end{equation*}
$$

with $\mathrm{U}=\mathrm{m}(\mathrm{m}+1)$. It is easy to use induction to show that this method gives an identity in m . We may write $\mathrm{m}=\mathrm{a} / \mathrm{b}$ and multiply throughout by $\mathrm{b}^{2^{\mathrm{n}}}$ to obtain an identity in a and b.

