different from 1. Then the sequence $\left(\log \left|\mathrm{V}_{\mathrm{n}}\right|\right)$ is $\mathrm{u} . \mathrm{d}$. $\bmod 1$, and the sequence of integral parts $\left(\left[\log \left|V_{n}\right|\right]\right)$ is u.d.

Proof. We have

$$
\mathrm{V}_{\mathrm{n}}=\frac{\left(\gamma_{2}-\gamma_{1} \beta_{2}\right) \beta_{1}^{\mathrm{n}-1}-\left(\gamma_{2}-\gamma_{1} \beta_{1}\right) \beta_{2}^{\mathrm{n}-1}}{\beta_{1}-\beta_{2}}
$$

where

$$
\beta_{1}=\frac{1}{2}\left(a_{1}+\sqrt{a_{1}^{2}+4 a_{0}}\right), \quad \beta_{2}=\frac{1}{2}\left(a_{1}-\sqrt{a_{1}^{2}+4 a_{0}}\right) .
$$

Now

$$
\log \left|\mathrm{V}_{\mathrm{n}+1}\right|-\log \left|\mathrm{v}_{\mathrm{n}}\right|=\log \left|\frac{\left(\gamma_{2}-\gamma_{1} \beta_{2}\right) \beta_{1}^{\mathrm{n}}-\left(\gamma_{2}-\gamma_{1} \beta_{1}\right) \beta_{2}^{\mathrm{n}}}{\left(\gamma_{2}-\gamma_{1} \beta_{2}\right) \beta_{1}^{\mathrm{n}-1}-\left(\gamma_{2}-\gamma_{1} \beta_{1}\right) \beta_{2}^{\mathrm{n}-1}}\right|
$$

We may suppose that $\left|\beta_{1}\right| \neq 1,\left|\beta_{2} / \beta_{1}\right|<1$.
Since $\log \left|\mathrm{V}_{\mathrm{n}+1}\right|-\log \left|\mathrm{V}_{\mathrm{n}}\right| \rightarrow \log \left|\beta_{1}\right|$ as $\mathrm{n} \rightarrow \infty$, and as $\left|\beta_{1}\right|$ is algebraic when β_{1} is algebraic, we may complete the proof in the same way as done above.

REFERENCES

1. J. L Brown and R. L. Duncan, "Modulo One Uniform Distribution of the Sequence of Logarithms of Certain Recursive Sequences," Fibonacci Quarterly, Vol. 8, No. 5 (1970), pp. 482, etc.
2. J. G. van der Corput, "Diophantische Ungleichungen, " Acta. Mathematica, Bd. 56 (1931), pp. 373-456.
3. C. L. VandenEynden, The Uniform Distribution of Sequences, Ph. D. Thesis, University of Oregon, 1962.
4. I. Niven, 'Uniform Distribution of Sequences of Integers," Trans. A.M.S.,

ERRATA

Please make the following changes in the article, "A Triangle with Integral Sides and Area," by H. W. Gould, appearing in Vol. 11, No. 1, pp. 27-39.

Page 28, line 3 from bottom:	For $+u-v \sqrt{3}$)	read	$+(\mathrm{u}-\mathrm{v} \sqrt{3})$.
Page 31, Eq. (11):	For $\frac{\mathrm{K}^{2}}{\mathrm{a}^{2}}$	read	$\frac{\mathrm{K}^{2}}{\mathrm{~s}^{2}}$
Page 31, line 6 from bottom:	For $4 \mathrm{x}^{2}-3 \mathrm{y}^{2}$	read	$4 \mathrm{x}^{2}-3 \mathrm{v}^{2}$
Page 33, Eq. (17):	For r_{u}^{2}	read	$\mathrm{r}_{\mathrm{a}}^{2}$
Page 33, Eq. (22):		read	$\mathrm{r}_{\mathrm{c}}: \infty, 6,14$
Page 35, Line 13:	For i.e.	read	as
Page 35, Line 16:	For $\mathrm{N}=$ orthocenter	read	$\mathrm{H}=$ orthocenter.
Page 35, line 9 from bottom:	For $\|\mathrm{I}=\mathrm{H}\|^{2}$	read	$\|\mathrm{I}-\mathrm{H}\|^{2}$
Page 36, line 12 from bottom:	For residue	read	radius

Page 39, Ref. 4. Underline Jahrbuch uber die.
Page 39, Ref. 4. Closed quotes should follow sind rather than Dreieck.

