which gives the complete solution.
Case 2. $\mathrm{k}=3$.

$$
\begin{array}{rll}
\lambda_{1}=\frac{1}{4} \sec ^{2}\left(\frac{3 \pi}{7}\right), & \lambda_{2}=\frac{1}{4} \sec ^{2}\left(\frac{2 \pi}{7}\right), & \lambda_{3}=\frac{1}{4} \sec ^{2}\left(\frac{\pi}{7}\right) \\
\mathrm{f}_{1}(0)=0 & \mathrm{f}_{2}(0)=0 & \mathrm{f}_{3}(0)=1 \\
\mathrm{f}_{1}(1)=1 & \mathrm{f}_{2}(1)=2 & \mathrm{f}_{3}(1)=3 \\
\mathrm{f}_{1}(2)=6 & \mathrm{f}_{2}(2)=11 & \mathrm{f}_{3}(2)=14
\end{array} .
$$

Thus

$$
\begin{aligned}
\mathrm{f}_{3}(\mathrm{n}) & =\mathrm{B}_{31} \lambda_{1}^{\mathrm{n}}+\mathrm{B}_{32} \lambda_{2}^{\mathrm{n}}+\mathrm{B}_{33} \lambda_{3}^{\mathrm{n}} \\
1 & =\mathrm{B}_{31}+\mathrm{B}_{32}+\mathrm{B}_{33} \\
3 & =\mathrm{B}_{31} \lambda_{1}+\mathrm{B}_{32} \lambda_{2}+\mathrm{B}_{33} \lambda_{3} \\
14 & =\mathrm{B}_{31} \lambda_{1}^{2}+\mathrm{B}_{32} \lambda_{2}^{2}+\mathrm{B}_{33} \lambda_{3}^{2}
\end{aligned}
$$

Solving simultaneously,

$$
\mathrm{B}_{31}=\frac{\lambda_{2} \lambda_{3}-3\left(\lambda_{2}+\lambda_{3}\right)+14}{\left(\lambda_{1}-\lambda_{2}\right)\left(\lambda_{1}-\lambda_{3}\right)}
$$

Calculating $\lambda_{1}, \lambda_{2}, \lambda_{3}$ and substituting above gives $B_{31} \doteq 0.537$, so that

$$
\mathrm{f}_{3}(\mathrm{n}) \sim 0.537\left(\frac{1}{2} \sec \left(\frac{3 \pi}{7}\right)\right)^{2 \mathrm{n}}
$$

[Continued from page 301.]

Page 49, Eq. (33): Please change the last number on the line from " 3 " to "1."
Page 49, Line following Eq. (34): Please raise $"(\bmod 3) "$ to the main line of type.
Page 49, line 6 from bottom: Please insert brackets around $X(X-1), X$.
Page 53, line 2 from bottom: In the third column from the left, please change the number to read: " 2750837603 ."

