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ON REPRESENTATIONS OF INTEGERS USING FIBONACCI NUMBERS 

In how many ways may a given positive integer p be written as the sum of distinct Fib-
onacci numbers , order of the summands not being considered? The Fibonacci numbers a re 
1, 1, 2, 3, 5, • • • , F , • • • , where Fx = 1, F2 = 1, and F + 2 = F + F for n > 1. 
For example, 10 = 8 + 2 = 2 + 3 + 5 is valid, but 10 = 5 + 5 = 1 + 1 + 8 would not be valid. 
The original question is an example of a representation problem, which we do not intend to 
answer fully here. We will explore representations using the least possible number or the 
greatest possible number of Fibonacci numbers. 

1. THE ZECKENDORF THEOREM 

F i r s t we prove by mathematical induction a lemma which has immediate application. 
Lemma: The number of subsets of the set of the first n integers , subject to the con-

straint that no two consecutive integers appear in the same subset, is F ? , n > 0. 
Proof. The theorem holds for n = 0, for when we have a set of no integers the only 

subset is <$, the empty set. We thus have one subset and F0+2 = F2 = 1. 
For n = 1, 2 subsets: { l } , <p; F1 + 2 = F3 = 2 

n = 2, 3 subsets: { l } , {2}, 0; F2 + 2 = F4 = 3 
n = 3, 5 subsets: {1,3}, {3}, {2}, { l } , 0 ; F3 + 2 = F5 = 5 . 

Assume that the lemma holds for n < k. Then notice that the subsets formed from the first 
(k + 1) integers are of two kinds — those containing (k + 1) as an element and those which 
do not contain (k + 1) as an element. All subsets which contain (k + 1) cannot contain e le-
ment k and can be formed by adding (k + 1) to each subset, made up of the (k - 1) inte-
ge r s , which satisfies the constraint. By the inductive hypothesis there are F, 2 subsets 
satisfying the constraint and using only the f irst k integers, and there are F. + 1 subsets 
satisfying the constraints and using the first (k - 1) integers. Thus there a re precisely 

Fk+2 + Fk+1 = Fk+3 = F(k+l)+2 

subse ts satisfying the constraint and using the first (k + 1) integers. The proof is complete 
by mathematical induction. 

Now, for the application. The number of ways in which n boxes can be filled with zeros 
or ones (every box containing exactly one of those numbers) such that no two "ones" appear in 
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adjacent boxes is F 2- (To apply the lemma simply number the n boxes.) Since we do not 
wish to use all zeros (<#>, the empty set in the lemma) the number of logically useable a r -
rangements is F 9 - 1. Now, to use the distinctness of the Fibonacci numbers in our r ep -
resentations, we must omit the initial FA = 1, so that to the n boxes we assign in order the 
Fibonacci numbers F2, F3, • • • , F ... This gives us a binary form for the Fibonacci posi-
tional notation. The interpretation to give the "zero" or "one" designation is whether or not 
one uses that part icular Fibonacci number in the given representation. If a one appears in the 
box allocated to F, , then F, is used in this particular representation. Notice that since 
no two adjacent boxes can each contain a "one ," no two consecutive Fibonacci numbers may 
occur in the same representation. 

Since the following are easily established identities, 

F 2 + F 4 + . . . + F 2 k = F 2 f c + 1 - 1 , 

•'2k+l = F 2 k + 2 

using the Fibonacci positional notation the larges t number representable under the constraint 
with our n boxes is F ^0 - 1. Also the number F ,., is in the n box, so we must be n+2 n+1 
able to represent at most F ? - 1 distinct numbers with F2, F3, • • • , F n + 1 subject to the 
constraint that no two adjacent Fibonacci numbers are used. Since there are F 9 - 1 dif-
ferent ways to distribute ones and zeros in our n boxes, there are F 9 - 1 different r ep -
resentations which could represent possibly F 9 - 1 different integers. That each integer 
p has a unique representation is the Zeckendorf Theorem [ l ] : 

Theorem. Each positive integer p has a unique representation as the sum of distinct 
Fibonacci numbers if no two consecutive Fibonacci numbers are used in the representation. 

We shall defer the proof of this until a la ter section. Now, a minimal representation of 
an integer p uses the least possible number of Fibonacci numbers in the sum. If both F, 
and F, appeared in a representation, they could both be replaced by F. - , thereby r e -
ducing the number of Fibonacci numbers used. It follows that a representation that uses no 
two consecutive Fibonacci numbers i s a minimal representation a n d a Zeckendorf 
representation. 

2. ENUMERATING POLYNOMIALS 

Next, we use enumerating polynomials to establish the existence of at least one minimal 
representation for each integer. 

An enumerating polynomial counts the number of Fibonacci numbers necessary in the 
representation of each integer p in a given interval F < p < F m + 1 in the following way. 
Associated with this interval is a polynomial P 1(x). A term ax J belongs to P ..(x) if 
in the interval F < p < F - , there are a_ integers p whose minimal representation r e -
quires i_ Fibonacci numbers. For example, consider the interval F6 = 8 < p < 13 = F7. 
Here, we can easily determine the minimal representations 
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8 = 8 
9 = 1 + 8 

10 = 2 + 8 
11 = 3 + 8 
12 = 1 + 3 + 8 . 

Thus, P5(x) = x3 + 2x2 + x because one integer required 3 Fibonacci numbers, 3 integers 
required 2 Fibonacci numbers, and one integer required one Fibonacci number in its mini-
mal representation. We note in passing that all the minimal representations in this interval 
contain 8 but not 5. We now l is t the first nine enumerating polynomials. 

F ^ P < F x 1 P Ax) 
m * m+1 m - 1 

m = 1 1 £ p < 1 0 = P0(x) 

m = 2 1 < p < 2 x = P4(x) 

m = 3 2 < p < 3 x = P2(x) 

m = 4 3 < p < 5 x 2 + x = P3(x) 

m = 5 5 < p < 8 2 x 2 + x = P4(x) 

m = 6 8 < p < 13 x3 + 3x2 + x = P5(x) 

m = 7 13 < p < 21 3X3 + 4x2 + x = P@(x) 

m 

m 

8 21 ^. p < 34 x4 + 6X3 + 5x2 + x = P^(x) 

9 34 < p < 55 4x4 + lOx3 + 6x2 + x = P8(x) 

We shall now proceed by mathematical induction to derive a recurrence relation for the 
enumerating polynomials P (x). It is evident from the definitions that an enumerating poly-
nomial for F < p < F + 2 is the sum of the enumerating polynomials for F m < p < F m + 1 

and F < p < F ? . Also it will be proved that the minimal representation of any integer 
p in the interval F < p < F ( 1 contains F but not F ... If we added F , 0 to each ^ m m+1 m m - 1 m+z 
such minimal representation of p in F < p < F + we would get a minimal representa-
tion of an integer in the interval 

T, = T ? + T ? < D < F + F = F 
m+1 m m+2 ~ p m+1 m+2 m+3 

Clearly the enumerating polynomial for this interval is xP Jx) since each integer p in 
this interval has one more Fibonacci number in its minimal representation than did the co r -
responding integer p in the interval F < p < F -. 

Next, the integers p in the interval F 9 < p < F „ require an F 9 in this 
minimal representation while all the numbers in the interval F - £ p < F 9 have F -
in their minimal representation. In each of these minimal representations remove the F -
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and put in an F 2- The resulting integer will have a minimal representation with the same 
number of Fibonacci numbers as was required before. In other words, the enumerating poly-
monial P 1 (x) is also the enumerating polynomial for 

F - F + F < D T < F - F + F = L 
m+2 m+1 m+1 "" p m+2 m+1 m+2 m+1 

Now, the intervals F + 2 < p? < L - and L < pT < F „ are not overlapping and 
exhaust the interval F „ < p < F + „ . Thus, the enumerating polynomial for this interval 
is 

P m + 1 W = Pm(x) + xP m _ 1 (x ) , P0(x) = 0, Pi(x) = x , 

which is the required recurrence relation. 
Now, to show by mathematical induction that the minimal representation of any integer 

p in the interval F < p < F - contains F but not F .., re-examine the preceding 
steps. Each minimal representation in the interval F IO < p < F IO contains F lrt ex-* ^ m+2 — F m+3 m+2 
plicitly since we added F to a representation from the interval F < p < F - and by 
the inductive hypothesis those representations did not contain F - but all contained F . 
Next, for the representations froni F ^ < p < F ? , all of which used F - explicitly 
by inductive assumption, we removed the F - and replaced it by F ? so that each r ep -
resentation in F ^0 < p < F 10 contains F J O but not F ( 1 . Thus, if the integers p 

m+2 — * m+3 m+2 m+1 ' & ^ 
in the previous two intervals , namely, F 5 P < F - and F .. < p < F ? , had 
Zeckendorf representations, then the representations of the integers p in the interval F „ 
< p < F o are also Zeckendorf representations. 

Now, notice that P (1) is the sum of the coefficients of P (x), or the count of the 
numbers for which a minimal representation exists in the interval F - < p < F 9. But, 
P (1) = F because PH(1) = P2(l) = 1 and P ^ ( 1 ) = P (1) + 1 • P ,(1), so that the m m 1 W * m+1 m m - 1 
two sequences have the same beginning values and the same recursion formula. The number 
of integers in the interval F J i

< p < F ,„ is F , o - F .., = F , so that every inte-& m+1 ^ m+2 m+2 m+1 m J 

ger is represented. Thus, at least one minimal representation exists for each integer, and 
we have established Zeckendorf s theorem, that each integer has a unique minimal represen-
tation in Fibonacci numbers. Notice that this means that it is possible to express any integer 
as a sum of distinct Fibonacci numbers. Also, notice that the coefficients of P (x) are the 
summands along the diagonals of Pasca l ' s triangle summing to F with increasing powers 
as one proceeds up the diagonals beginning with x. 

3. THE DUAL ZECKENDORF THEOREM 

Suppose that, instead of a minimal representation, we wished to write a maximal r ep -
resentation, or , to use as many distinct Fibonacci numbers as possible in a sum to represent 
an integer. Then, we want no two consecutive Fibonacci numbers to be missing in the r ep -
resentation. Returning to our n non-empty boxes, for this case we wish to fill the boxes 
with zeros and ones with no two consecutive zeros . Here we consider n ones interposed 
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by at most one zero. Thus, we have boxes to zero or not to zero. These zeros can occur 
between the left-most one and the next on the right, between any adjacent pair of ones, and 
on the right of the last one if necessary. Thus, there a re precisely 2 n possibili t ies, or , 
2 maximal representations can be written using n Fibonacci numbers from among 1, 2, 
3 ' 5 ' " • » F 2n+1 ' 

Now, associate with integers p in the interval F - l < p < F - l an enumerating 
maximal polynomial P* . (x) which has a term axJ if a of the integers p require j _ Fib-
onacci numbers in their maximal representation. For example, in the interval F6 - 1 = 7 
< p < 12 = F7 - 1, the maximal representations are 

7 = 5 + 2 
8 = 5 + 2 + 1 
9 = 5 + 3 + 1 

10 = 5 + 3 + 2 + 1 
11 = 5 + 3 + 2 + 1 . 

Thus, P5(x) = x4 + 3x3 + x2 because one integer requires 4 Fibonacci numbers, 3 integers 
require 3 Fibonacci numbers , and one integer requires 2 Fibonacci numbers in its maximal 
representation. Notice that all maximal representations above use 5 but none use 8. The 
f i rs t eight enumerating maximal polynomials a re : 

F - l < p < F J . 1 - l PL ,W 
m J- m+1 Hi-1 

m = 2 0 < p < 1 1 = P*(x) 

m 3 1 < p < 2 x = P2*(x) 

m = 4 2 < p < 4 x2 + x = P3 (x) 

*, m = 5 4 < p < 7 x3 + 2x2 = P4(x) 

m = 6 7 < p < 12 x4 + 3X3 + x2 = P5*(x) 

m = 7 12 < p < 20 x5 + 4x4 + 3x3 = Pg (x) 

8 20 < p < 33 x6 + 5x5 + 6X4 + x3 = P 7 (x) m 

m = 9 33 < p < 54 x7 + 6x6 + 10x5 + 4X4 = P*(x) 

As before, we now derive the recurrence relation for the polynomials P*(x). 
Lemma. Each maximal representation for integers p in the interval F m - 1 < p < 

F , i - l contains explicitly F n. m+1 F J m - 1 
Proof. We can add F to each maximal representation in the interval F - 1 < p < 

F , -, - 1 and these numbers fall in the interval m+1 

2F - 1 < pf < F ,„ - 1 . m F m+2 
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We can also add F to each maximal representation in the interval F ., - 1 < p < F ,., m ^ m - 1 ^ m+1 
- 1 and these numbers fall in the interval 

F , n - 1 < pT < 2F - 1 . m+1 ^ m 

These two intervals a re non-overlapping and exhaustive of the interval 

F L 1 - l < p < F _ L O - l . m+1 ^ m+2 

Thus, each maximal representation in this interval contains explicitly F . 
Thus, the enumerating polynomials P*(x) for maximal representations satisfy 

P*(x) = x [P*_x(x) + P*_2(x)] , Pf(x) = 1, P2*(x) = x , 

and again P*(l) = F . This establishes that each non-negative integer has at least one max-
imal representation. 

Returning to the table of the f irs t eight polynomials P*(x), by laws of polynomial addi-
tion, adding the enumerating maximal polynomials yields a count of how many numbers r e -
quire k Fibonacci numbers in their maximal representation. So, it appears that 

n=l 
^P*(x) = Pf(x) + P2*(x) + P3*(x) + P4*(x) + P5*(x) + - - • + P* (x) + . . . 

= 1 + x + (x2 + x) + (x3 + 2x2) + (x4 + 3x3 + x2) + • - -

= 1 + 2x + 4x2 + 8X3 + • • • + 2 k x k + • • • 

(That this is indeed the case is proved in the two lemmas following the Dual Zeckendorf 
k Theorem.) In other words, 2 non-negative integers require k Fibonacci numbers in their 

maximal representation. But requiring that each integer has at least one maximal represen-
tation exhausts the logical possibilit ies. Thus, each integer has a unique maximal represen-
tation in distinct Fibonacci numbers, which proves the Dual Zeckendorf Theorem [2]: 

Theorem. Each positive integer has a unique representation as the sum of distinct Fib-
onacci numbers if no two consecutive Fibonacci numbers are omitted in the representation. 

Lemma. Let fx(x) = 1, f2(x) = x, and f + 2 ( x ) = x f +i(x) + f
n ^ ^ e t h e F i D O n a c c i 

polynomials. Then 
P*(x2) = xn~Xf (x), n > 0 . n n 

n-l„ x f 

Proof. We proceed by mathematical induction. Observe that 

Pf(x2) = 1 = xHM , 

p*(x2) = x2 = xlf2(x) f 

p*(x2) = x2[p*_i(x2) + P*_2(X2)] . 
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Assume that 

Thus 
P * o<x2) = x n - 3 f Q(x) 

n -2 r - . , n - 3 , P*(x2) = ^ [ x ^ ^ x ) + x n - " \ _ 2 ( x ) ] 

= ^K-l^ + fn-2( x )3 = x I 1 " l f n ( x ) 

Lemma. 
oo 

2mJL*-™ 1 - 2x 
n=l 

P*(x) 

Proof. The Fibonacci polynomials have the generating function 

Effxl t 1 1 " 1 

n=l 

Now let x = t, and then by the previous lemma, 

00 00 

- — i — = y \ (x)x11-1 =y^p*(x2) = —i. 
1 _ x2 _ x2 Z « # n Z-# n x _ , 
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n=l n=l 
Therefore, 

_op 
p*(x) = - — 1 — = 1 + 2x + 4x2 + •. • + 2 n x n + I n 1 - 2x 

n=l 

Notice that the polynomials P*(x) have as their coefficients the summands along the 
rising diagonals of Pascal1 s triangle whose sums are the Fibonacci numbers but in the r e -
verse order of those for P (x). In fact, the minimal enumerating polynomials P ( x ) and 
the maximal enumerating polynomials P*(x) a re related as in the following lemma: 

Lemma. 
P (x) = x m P * (l/x) for m > 1 . m ' m 

Proof. This relationship will be proved by mathematical induction. 

m = 1: Pi(x) = x = x ^ P f U / x ) ] 

m = 2: P2(x) = x = x2(l/x) = x 2 [ P f ( l / x ) ] 

m = 3: P3(x) = x2 + x = x 3 ( l /x + l /x 2 ) = x3[ P3*(l/x) ] . 
Assume that 
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P k - l ( x ) = x k _ l p k _ l ( l / x ) ' 
Pk(x) = x k P*( l /x ) . 

Then, by the recurrence relations for the polynomials P (x) and P*(x) , 

P k + l W = P k f e ) + X P k- l ( X > 
= x k P * ( l / x ) + x x ^ P ^ U / x ) 

= X k + 1 ( l / x ) [ P * ( l / x ) 4- P ^ d / x ) ] 

= x k + 1 P * + 1 ( l / x ) 

which establishes the lemma by mathematical induction, 
Then, both the minimal and maximal representations of an integer are unique. Then, 

an integer has a unique representation in Fibonacci numbers if and only if i ts minimal and 
maximal representations are the same, which condition occurs only for the integers of the 
form F - 1, n > 3 [3] . In general, the representation of an integer in Fibonacci numbers 
is not unique, and, from the above r emarks , unless the number is one less than a Fibonacci 
number, it will have at least two representations in Fibonacci numbers. But, one need not 
stop here . The Fibonacci numbers F n and F 0 ,., can each be written as the sum of d i s -^ 2n 2n+l 
tinct Fibonacci numbers 1, 2, 3, 5, 8, • • • , in n different ways. For other integers p, 
the reader is invited to experiment to see what theorems he can produce. 

We now turn to representations of integers using Lucas numbers. 

4. THE LUCAS CASE 

If we change our representative set from Fibonacci numbers to Lucas numbers , we can 
find minimal and maximal representations of integers as sums of distinct Lucas numbers. 
The Lucas numbers are 2, 1, 3, 4, 7, 11, '*• , defined by L0 = 2 , L4 = 1, L2 = 3, 
L _ L 1 = L + L 1S n > 1. (See Brown [6a].) n+1 n n-1 L J 

The derivation of a recursion formula for the enume rating minimal polynomials Q (x) 
for Lucas numbers is very s imilar to that for the polynomials P (x) for Fibonacci numbers,, 
Details of the proofs are omitted here . Now, for integers p in the interval L < p < L - , 
the enumerating minimal polynomial Q 1 (x) has a te rm dx^ if d of the integers p r e -
quire j . Lucas numbers in their minimal representation. For example, the minimal r e p r e -
sentation in Lucas numbers for integers p in the interval 11 = L5 < p < L6 = 18 a re : 

11 = 11 
12 = 11 + 1 15 = 11 + 4 
13 = 11 + 2 16 = 11 + 4 + 1 
14 = 11 + 3 W = 11 + 4 + 2 
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so that Q4(x) = 2 x 3 + 4 x 2 + x since 2 integers require 3 Lucas numbers, 4 integers r e -
quire 2 Lucas numbers, and one integer requires one Lucas number. Notice that L5 = 11 
is included in each representation, but that L4 = 7 does not appear in any representation in 
this inverval. Also notice that we could have written 16 = 11 + 3 + 2. To make the minimal 
representation unique, it is necessary to avoid one of the combinations L0 + LA or LA + L3: 
we agree not to use the combination L0 + L2 = 2 + 3 in any minimal representation unless 
one or both of Lj and L3 also appear. The first nine Lucas enumerating minimal polynom-
ials follow. 

m = 1 

m = 2 

m = 3 

m = 4 

m = 5 

m = 6 

m = 7 

m = 8 

m = 9 

L m 

1 

3 

4 

7 

11 

18 

29 

47 

76 

< 

< 

< 

< 

< 

< 

< 

< 

< 

< 

P < 

P < 

P < 

P < 

P < 

P < 

P < 

P < 

P < 

P < 

m + 1 

3 

4 

7 

11 

18 

29 

47 

76 

123 

2X4 -

7x4 + 

2x5 + 16x4 + 

2X3 

5X3 

*• 9 x 3 

14x3 

2 Ox3 

+ 

+ 

+ 

+ 

+ 

Q -, (x) ^ m - 1 ' 

2x 

X 

2x2 + x 

3x2 + x 

4x* + x 

5x2 + x 

6x2 + x 

7x2 + x 

8x2 + x 

= Qo(x) 

= Qi(x) 

= Q2(x) 

= Q3(x) 

= Q4(x) 

= Q5(x) 

= Q6(x) 

= Q7(x) 

= Qs(x) 

Similarly to P (x), by the rules of polynomial addition and because of the way the polynom-
ials Q (x) are defined, 

jti 

Qn+1(x) = Qn(x) + xQn_1(x) , Q0(x) = 2x, Qt(x) = x , 

is the recursion relation satisfied by the polynomials Q (x). Here we have the same r ecu r -
sion formula satisfied by the polynomials P (x), but with different starting values. Notice 
that Q (1) = L . As before, Q Al) is the sum of the coefficients of Q n - 1 (x) s or , the 
count of the numbers for which a minimal representation exists in the interval L n < p < Ln + 1» 
which contains exactly L - - L = L - integers. Thus, each integer has at least one 
minimal representation in distinct Lucas numbers. 

Now, let us reconsider the n boxes. To have a minimal representation, we wish to 
fill the n boxes with zeros or ones such that no two ones are adjacent and to discard the 
arrangement using all zeros . As before, there are F n + 2 - 1 such arrangements. Now, 
establish a Lucas number positional notation by putting the Lucas numbers LQ} L ^ li2t Lg, 
• • • , L 1 into the n boxes. Again, the significance of the ones and zeros is determination 
of which Lucas numbers are used in the sum. ' But, notice that L0 + L2 = Lĵ  + L3, which 
would make more than one minimal representation of an integer possible. To avoid this prob-
lem, we consider the first four boxes and reject L0 + L2 whenever that combination occurs 
without L4 or L2. If such four boxes hold then there are (n - 4) remaining boxes which 
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0 1 0 1 

can hold F 2 compatible arrangements. Thus, rejecting these endings eliminates F 
arrangements , making the number of admissible arrangements F + 2 - F „ - 1 = L - 1. 
But the Lucas sequence begins with L0 = 2, so that the number L is in the box numbered 
(n + 1). Therefore, using the first n Lucas numbers and the two constraints , we can have 
at most L - 1 different numbers represented, for 

L i + L 3 + • -

L2 + L 4 + • • 

* + L 2 k - 1 " L 2 k 

+ L 2 k - 2 = L 2 k - 1 

- 2 

- 1 

and the L0 + L2 ending was rejected, 
Then, we can have at most L - 1 different numbers represented using L0> h1, • • • , 

L , but the enumerating minimal polynomial guarantees that each of the numbers 1, 2, 3, 
• • • , L - 1, has at leas t one minimal representation. Thus, the minimal representation of 
an integer in Lucas numbers , subject to the two constraints given, is unique. This is the 
Lucas Zeckendorf Theorem. 

For the maximal representation of an integer using distinct Lucas numbers , again we 
will need to use adjacent Lucas numbers whenever possible. In our n boxes, then, we will 
want to place the ones and zeros so that there never are two consecutive zeros . Also, we 
need to exclude the ending ht + L3 in our representations to exclude the possibility of two 
maximal representations for an integer, one using L0 + L2 = 5 and the other LA + L3 = 5. 
We will use the combination LA + L3 only when one of L0 or L2 occurs in the same maxi-
mal representation. 

Now, let the enumerating maximal polynomials for the Lucas case for the interval L & 
p < L - be Q* (x), where dxJ is a term of Q* ..(x) if d of the integers p require j _ 
Lucas numbers in their maximal representation. For example, the maximal representation 
in Lucas numbers for integers p in the interval 11 = L5 < p < L6 = 18 a re : 

11 

12 

13 

14 

15 

16 

17 

= 
= 
= 
= 
= 
= 
= 

7 

7 

7 

7 

7 

7 

7 

+ 3 

+ 3 

+ 3 

+ 4 

+ 4 

+ 4 

+ 4 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

1 

2 

2 

2 

3 

3 

3 

+ 

+ 

+ 

+ 

-f 

1 

1 

1 

2 

2 + 1 

so that Q|4(x) = x5 + 4X4 + 2X3, since one integer requires 5 Lucas numbers , 4 integers r e -
quire 4 Lucas numbers, and 2 integers require 3 Lucas numbers in their maximal represen-
tation. The first nine polynomials Q*(x) follow. 



X5 

X6 

1 + 6x6 

+ 

+ 

+ 

X3 

X4 

4x4 

5x5 

9x5 

Q* ^m-
2x = 

x2 = 

+ 2x2 = 

+ 3x3 = 

+ 2x3 = 

+ 5X4 = 

+ 2x4 = 

Qo*(x) 

Q*(x) 

Q2*(x) 

Q3*(x) 

Q4*(x) 

Q|(x) 

Q6*(x) 
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m F m+1 
m = 1 1 < p < 3 

m = 2 3 < p < 4 

m = 3 4 < p < 7 

m = 4 7 < p < 11 

m = 5 11 < p < 18 

m = 6 18 < p < 29 

m = 7 29 < p < 47 

m = 8 47 < p < 76 x8 + 7x7 + 14x6 + 7x5 = Q*(x) 

m = 9 76 < p < 123 x9 + 8x8 + 20x7 + 16x6 + 2x5 = Qg(x) 

The recursion relation for the polynomials Q*(x) can be derived in a s imilar fashion 
to P*(x), becoming n & 

Q*+ 1W = x[Q*(x) + Q*_1(x)]J Q0*(x) = 2x, Qf(x) = x2 . 

Notice that the same coefficients occur in the enumerating minimal Lucas polynomial Q (x) 
and in the enumerating maximal Lucas polynomial Q*(x). The relationship in the lemma be-
low could be proved by mathematical induction, paralleling the proof of the s imilar property 

(x) and 
i 
Lemma. 

of P (x) and P*(x) given in the preceding section. 

Q (x) = x m + 1 Q * (1/x) for m > 1 . 
^ m ' ^ m ' 

Also, the polynomials P*(x) and Q*(x) are related as follows: 
Lemma. 

Q*__1(x) = xl*(x) + x2P*_2(x), n * 1 , 

which could be proved by mathematical induction. Notice that the lemma above becomes the 
well known identity, L = F + F Q, when x = 1. n—j. n n—A 

Now we return to our main problem. 
By laws of polynomial addition, if we add all polynomials Q*(x), the coefficients in the 

sum will provide a count of how many integers require k Lucas numbers in their maximal 
representation. Then, it would appear that 

00 

n=0 
Q* (x) = Q0*(x) + Q*(x) + Q2*(x) + Q3*(x) + Q4*(x) + . . . + Q*(x) + 

= 2x + x2 + (x3 + 2x2) + (x4 + 3x3) + (x5 + 4x4 + 2x3) + • 

= 2x + 3x2 + 6x3 + 12X4 + 24x5 + • • • + 3 -2 k " 2 x k + • • • , 
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k-2 ^ 

so that 3«2 integers require k Lucas numbers in their maximal representation, k > 2. 
A proof that this is the cor rec t computation of the sum of the polynomials Q*(x) follows. 

Lemma. If 
Q*(x) = 2x, Qf(x) = x2, and Q*(x) = x[Q*_1(x) + Q*_ 2 to ] , 

then 
Q * ^ ) = xn + 1

Lfn(X) + fn_2(x)] , 

where f (x) a re the Fibonacci polynomials. 
Proof. To begin a proof by mathematical induction, observe that 

n = 1: <$(x2) = 2x2 = x2(l + 1) .= x1 + 1[fi(x) + f-i(x)] 

n = 2: Qf(x2) = x4 = x3(x + 0) = x2+1[f2(x) + f0(x)] . 

Assume that the lemma holds for (n - 1) and (n - 2). Then 

Q*(x2) = x 2 [Q*^(x 2 ) + Q*_2(x2)] 

= x2{xn + 1[fn(x) + fn_2(x)] + ^ [ f n - 1 W + fn_3(x)]} 

= Xn+2{[Mn(x) + f^ fe ) ] + [ x f n - 2 W + ^ ( X ) ] } 

= x n + 2 [ f n + 1 ( x ) + f n ^ ( x ) ] , 

establishing the lemma by mathematical induction for n > 1. 
Using known generating functions for the Fibonacci polynomials as before, 

c t v , n + l t2 

.f (x)t = - n 1 - xt - t2 
n=l 

OO 

JLmJ n" 
n+l = tfq - xt) 

n=l 2 ! - * - « 
Adding, 

Setting t = x, 

1 " xt ~ * 1 ^ 1 

T^TT =Z)xI1+1[fn<x> + f„-2<x>] =^K-i^ • 
1 - 2 x n=l i £ l 

Therefore, 
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,Q*(x) 2x 
2x = 2x + 3xz 

2x 2x + > 3 -2 n - 2 x n 

n=0 n=2 
«k-l To seethe reason for the peculiar coefficients 3*2 "J", examine the eight possible ways 

to fill the first four boxes with zeros and ones. Then see how many numbers requiring n 
Lucas numbers in their maximal representation could be written. In other words, consider 
how to distribute n ones without allowing two consecutive zeros . The eight cases follow. 

L3 

1 
1 
0 
1 
1 
1 
0 
0 

L2 

1 
0 
1 
1 
0 
1 
1 
1 

Count of Possibili t ies (n ^. 4) 
2 n-4 

excluded 
2 n -3 

2 n -3 

2 n " 3 

2 n -3 

2 n-4 
0 n -3 

Summing the seven useable cases gives 
5-2n"3 + 2»2n"4 = 6-2n"3 = 3-2n~2, n ^ 4 , 

possible maximal representations. The endings with a zero in the left-most box would r e -
quire that the L4 box contain a one, while all would have either an L4 or an L5 appearing 
in the representation. The endings listed above do not give the numbers requiring 1, 2, or 
3 Lucas numbers in their maximal representation. So, the endings given above, do not in-
clude the representations of 1 through 9, 11 and 12, which give the f irs t three terms 2x + 3x2 

+ 6x3 of the enumerating maximal Lucas polynomial sum and explain the i r regular f i rs t t e rm 
in the sum of the polynomials Q*(x). The numbers not included in the count of possibilities 
above follow. 

J4 

1 

1 

L 3 

0 

0 

0 

0 

0 

0 

1 

1 

1 

0 

0 

L 2 

0 

0 

0 

1 

1 

1 

0 

1 

1 

1 

1 

L i 

1 

0 

1 

1 

0 

1 

1 

1 

0 

1 

0 

Lo 

0 

1 

1 

0 

1 

1 

1 

0 

1 

0 

1 

repres en ting: 

1 I 
2 \ 2 X 

3 J 
4 

5 ' 

6 

7 

8 

3x2 

\ 

6X3 

9 1 " 1 12 
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k-2 Now, the enumerating maximal polynomial guarantees that 3*2 ~ integers require k 

Lucas numbers in their maximal representation, but examining the possible maximal r e p r e -
k-2 

sentations which could be written using k Lucas numbers shows that at most 3-2 differ-
ent representations could be formed. That i s exactly one apiece, so the maximal represen-
tation of an integer using Lucas numbers subject to the two constraints, that no two consecu-
tive Lucas numbers are omitted and that the combination L3 + L1 is not used unless L0 or 
L2 also appear, is unique. 

5. CONCLUDING REMARKS 

Much interest has been shown in the subject of representations of integers in recent 
years . Some of the many diverse new resul ts which a r i se naturally from this paper a re r e -
corded here with references for further reading. 

That the Fibonacci and Lucas sequences are complete has been shown in this paper, 
although the property was not named. A sequence of positive integers , al9 a2, • • • , a , • • • , 
is complete with respect to the positive integers if and only if every positive integer m is the 
sum of a finite number of the members of the sequence, where each member is used at most 
once in any given representation. (See [4] , [5].) For example, the sequence of powers of 
two is complete; any positive integer can be represented in the binary system of numeration. 
However, if any power of 2, for example, 1 = 2°, is omitted, the new sequence is not com-
plete. It is surprising that, for the Fibonacci sequence where a = F , n > 1, if any one 
a rb i t ra ry number F, is missing, the sequence is still complete, but if any two arb i t ra ry 
Fibonacci numbers F and F are missing, the sequence is incomplete [4] . 

The Dual Zeckendorf Theorem has an extension that character izes the Fibonacci numbers. 
Brown in [2] proves that, if each positive integer has a unique representation as the sum of 
distinct members of a given sequence when no two consecutive members of the sequence are 
omitted in the representation, then the given sequence is the sequence of Fibonacci numbers. 

Generalized Fibonacci numbers can be studied in a manner s imilar to the Lucas case. 
A set of particularly interesting sequences arising in Pasca l ' s triangle appears in [6]; the 
sequences formed as the sums of elements of the diagonals of Pascal1 s left-justified triangle,, 
beginning in the left-most column and going right one and up p throughout the ar ray . (The 
Fibonacci numbers occur when p = 1.) Or, the squares of Fibonacci numbers may be used 
(see [7]), which gives a complete sequence if members of the sequence can be used twice. 
Other ways of studying generalized Fibonacci numbers include those given in [8] , [9] , [10] ,9 

and [11]. 
To return to the introduction, Carlitz [12] and Klarner [13] have studied the problem 

of counting the number of representations possible for a given integer. Tables of the number 
of representations of integers as sums of distinct elements of the Fibonacci sequence as well 
as other related tables appear In [14]. The general problem of xepresentations of integers 
using the Fibonacci numbers , enumerating intervals , and positional binary notation for the 
representations were given by Ferns [15] while [16] is one of the ear l ies t references follow-
ing Daykin [8]. The suggested readings and the references given here are by no means ex-
haustive. The range of representation problems is bounded only by the imagination. 
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