THE NUMBER OF SDR'S IN CERTAIN REGULAR SYSTEMS

DAVID A. KLARNER
Stanford University, Stanford, California

Abstract

Let $\left(a_{1}, \cdots, a_{k}\right)=\bar{a}$ denote a vector of numbers, and let $C(\bar{a}, n)$ denote the $n \times n$ cyclic matrix having $\left(a_{1}, \cdots, a_{k}, 0, \cdots, 0\right)$ as its first row. It is shown that the sequences ($\operatorname{det} \mathrm{C}(\overline{\mathrm{a}}, \mathrm{n}): \mathrm{n}=\mathrm{k}, \mathrm{k}+1, \ldots$) and (per $\mathrm{C}(\overline{\mathrm{a}}, \mathrm{n}): \mathrm{n}=\mathrm{k}, \mathrm{k}+1, \cdots$) satisfy linear homogeneous difference equations with constant coefficients. The permanent, per C, of a matrix C is defined like the determinant except thatoneforgets about $(-1)^{\operatorname{sign} \pi}$ where π is a permutation.

\section*{INTRODUCTION}

While she was a student at Lowell High School, Beverly Ross [2] generalized an exercise given by Marshall Hall, Jr. [1], and found an elegant solution. Hall's exercise was posed in the context of systems of distinct representatives, or $\mathrm{SDR}^{\prime} \mathrm{S}$ for short. Let $\bar{A}=\left(A_{1}, \cdots, A_{m}\right)$ denote an m-tuple of sets, then an m-tuple (a_{1}, \cdots, a_{m}) with $a_{i} \in A_{i}$ for $i=1, \cdots, m$ is an SDR of \bar{A} if the elements a_{1}, \cdots, a_{m} are all distinct. Hall's exercise is the case $m=7$ of the following problem posed and solved by Ross: Let $A_{i}=\{i$, $\mathrm{i}+1$, $\mathrm{i}+2\}$ denote a 3 -set of consecutive residue classes modulo m for $\mathrm{i}=1, \cdots, \mathrm{~m}$. The number of SDR's of $\left(A_{i}: i=1, \cdots, m\right)$ is $2+L_{m}$ where L_{m} is the $m^{\text {th }}$ term of the Lucas sequence $1,3,4,7,11, \cdots$ defined by $L_{1}=1, L_{2}=3$ and $L_{n}=L_{n-1}+L_{n-2}$ for $\mathrm{n}=3,4, \cdots$. For example, it follows from this result that the solution to Hall's exercise is $2+\mathrm{L}_{7}=31$.

In this note we give a new proof of Ross' theorem, and indicate a generalization.

ROSS' THEOREM

We shall require a simple result which appears in Ryser [3]; namely, the number of SDR's of an m-tuple $\bar{B}=\left(B_{1}, \cdots, B_{m}\right)$ of sets B_{1}, \cdots, B_{m} is equal to the permanent of the incidence matrix of $\overline{\mathrm{B}}$. Since this fact is an immediate consequence of definitions, we give them here. Let m and n denote natural numbers with $m \leq n$, and let B_{1}, \cdots, B_{m} denote subsets of $\{1, \cdots, n\}$. The incidence matrix $[b(i, j)]$ of $\bar{B}=\left(B_{1}, \cdots, B_{m}\right)$ is defined by

$$
b(i, j)= \begin{cases}1, & \text { if } j \in B_{i} \\ 0, & \text { if } j \neq B_{i}\end{cases}
$$

for $i=1, \cdots, m$ and $j=1, \cdots, n$. The permanent of an $m \times n$ matrix $[r(i, j)]$ is defined to be

$$
\operatorname{per}[r(i, j)]=\sum_{\pi} r(i, \pi 1) r(2, \pi 2) \cdots r(m, \pi m)
$$

where the index of summation extends over all one-to-one mappings π sending $\{1, \ldots, m\}$ into $\{1, \cdots, n\}$.

The incidence matrix C_{m} of the m-tuple $\bar{A}=\left(A_{1}, \cdots, A_{m}\right)$ of sets A_{1}, \cdots, A_{m} considered by Ross is an $m \times m$ cyclic matrix having as its first row ($1,1,1,0, \cdots, 0$); that is, the first row has its first three components equal to 1 and the rest of its components equal to 0 . For example, the incidence matrix for Hall's exercise is

$$
C_{\boldsymbol{\eta}}=\left[\begin{array}{lllllll}
1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Ross' Theorem is equivalent to showing that per $C_{m}=2+L_{m}$. To do this, we define three sequences of matrices:
$D_{3}=\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1\end{array}\right], \quad D_{4}=\left[\begin{array}{cccc}1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1\end{array}\right], \quad D_{5}=\left[\begin{array}{ccccc}1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1\end{array}\right], \cdots ;$
$\mathrm{E}_{3}=\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1\end{array}\right], \quad \mathrm{E}_{4}=\left[\begin{array}{cccc}1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1\end{array}\right], \quad \mathrm{E}_{5}=\left[\begin{array}{ccccc}1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1\end{array}\right], \ldots ;$
$F_{3}=\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right], \quad F_{4}=\left[\begin{array}{llll}1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1\end{array}\right], \quad F_{5}=\left[\begin{array}{lllll}1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1\end{array}\right], \cdots$.
Let per $C_{m}=c_{m}$, per $D_{m}=d_{m}$, per $E_{m}=e_{m}$, and per $F_{m}=f_{m}$. We use the following properties of the permanent function. First, the permanent of a $0-1$ matrix is equal to
the sum of the permanents of the minors of the 1 's in a row or in a column of the matrix. Second, the permanent of a matrix is unchanged by permuting the rows or by permuting the columns.of the matrix. Third, the permanent of a matrix having a row or column of $0^{1} \mathrm{~s}$ is equal to 0 . Fourth, the permanent of a square matrix is equal to the permanent of the transpose of the matrix. Expanding per C_{m} in terms of the minors of the $1^{\prime} s$ in the first row of C_{m}, we find
(1)

$$
c_{m}=2 d_{m-1}+e_{m-1} \quad(m=4,5, \cdots)
$$

Expanding per D_{m} in terms of the minors of the $I^{\prime} s$ in the first column of D_{m}, we find

$$
\begin{equation*}
d_{m}=e_{m-1}+f_{m-1} \quad(m=4,5, \cdots) \tag{2}
\end{equation*}
$$

It is easy to show that

$$
\begin{gather*}
e_{m}=e_{m-1}+e_{m-2} \quad(m=4,5, \cdots) \tag{3}\\
f_{m}=f_{m-1}=\cdots=f_{3}=1
\end{gather*}
$$

Using the system (1)-(4) it is easy to show by induction that $e_{m}=F_{m+1}$, where F_{m} denotes the $m^{\text {th }}$ term of the Fibonacci sequence $(1,1,2,3, \cdots), d_{m}=1+F_{m}$, and $c_{m}=$ $2+2 \mathrm{~F}_{\mathrm{m}-1}+\mathrm{F}_{\mathrm{m}}=2+\mathrm{F}_{\mathrm{m}-1}+\mathrm{F}_{\mathrm{m}+1}=2+\mathrm{L}_{\mathrm{m}}$ for $\mathrm{m}=3,4, \cdots$.

A GENERALIZATION

Let $\bar{a}=\left(a_{1}, \cdots, a_{k}\right)$ denote a k-tuple of numbers and let T denote a $k \times(k-1)$ matrix having all of its entries in the set $\left\{0, a_{1}, \cdots, a_{k}\right\}$. For each $n \geq k$ define an $n \times n$ matrix $\mathrm{C}(\mathrm{T}, \mathrm{n})$ as follows:

The first $k-1$ columns of $C(T, n)$ have the upper triangular half T_{1} of T in the upper right corner, and the lower triangular half T_{2} of T in the lower left corner. All other entries in the first $k-1$ columns of $\mathrm{C}(\mathrm{T}, \mathrm{n})$ are 0 . The remaining $\mathrm{n}-\mathrm{k}+1$ columns of
$C(T, n)$ consist of $n-k+1$ cyclic shifts of the column ($\left.a_{k}, \cdots, a_{2}, a_{1}, 0, \cdots, 0\right)$.
Given a $k \times(k-1)$ matrix T having all of its entries in $\left\{0, a_{1}, \cdots, a_{k}\right\}$ and having (t_{1}, \cdots, t_{k-1}) as its top row, we expand per $C(T, n)$ by the minors of elements in the top row of $\mathrm{C}(\mathrm{T}, \mathrm{n})$. It turns out that these minors always have the form $\mathrm{C}\left(\mathrm{T}_{\mathrm{i}}, \mathrm{n}-1\right)$ where T_{i} is a $k \times(k-1)$ matrix having all its entries in $\left\{0, a_{1}, \cdots, a_{k}\right\}$. Thus, there exist $\mathrm{k} \times(\mathrm{k}-1)$ matrices $\mathrm{T}, \cdots, \mathrm{T}$ having all their entries in $\left\{0, \mathrm{a}_{1}, \cdots, \mathrm{a}_{\mathrm{k}}\right\}$ such that

$$
\begin{equation*}
\operatorname{per} C(T, n)=\sum_{i=1}^{k} t_{i} \operatorname{per} C\left(T_{i}, n-1\right) \tag{1}
\end{equation*}
$$

where $t_{k}=a_{k}$. (If we are dealing with determinants, $(-1)^{i}$ must be put into the summand.) We have an equation like (1) for each matrix T; hence, we have a finite system of equations if we let T range over all possible $k \times(k-1)$ matrices with their entries in $\left\{0, a_{1}\right.$, $\left.\cdots, a_{k}\right\}$. The existence of this system of difference equations implies the existence of a difference equation satisfied by the sequence (per $C(T, n): n=k, k+1, \cdots$) for each fixed matrix T. (This is also true for the sequence ($\operatorname{det} \mathrm{C}(\mathrm{T}, \mathrm{n}): \mathrm{n}=\mathrm{k}, \mathrm{k}+1, \cdots$).) A consequence of the foregoing is the result proved by Ross, but evidently much more is true.

Let r_{1}, \cdots, r_{n} denote natural numbers with $1=r_{1}<\ldots<r_{n}=k$, and for each natural number $m \geq k$ define the collection $A_{m}=\left\{A_{1}, \cdots, A_{m}\right\}$ of sets A_{i} of residue classes modulo m where

$$
A_{i}=\left\{r_{1}+i, \cdots, r_{n}+i\right\}
$$

Let $a(m)$ denote the number of $S D R^{\prime} s$ of \bar{A}_{m}, then the sequence $(a(m): m=k, k+1, \cdots)$ satisfies a linear homogeneous difference equation with constant coefficients. The proof of this fact follows the proof of Ross' Theorem given in the preceding section.

Note that our existence theorem has a constructive proof, but we do not have an explicit expression for a difference equation satisfied by the sequence (per $C(T, n): n=k, k+1, \cdots$). This gives rise to a host of interesting research problems. For example, give a difference equation satisfied by the sequence ($\operatorname{per} \mathrm{C}(\mathrm{k}, \mathrm{n}): \mathrm{n}=\mathrm{k}, \mathrm{k}+1, \cdots$) where $\mathrm{C}(\mathrm{k}, \mathrm{n})$ is the cyclic $\mathrm{n} \times \mathrm{n}$ matrix having as its first row ($1, \cdots, 1,0, \cdots, 0$) consisting of $k 1^{1} \mathrm{~s}$ followed by $\mathrm{n}-\mathrm{k} 0^{\prime} \mathrm{s}$.

REFERENCES

1. Marshall Hall, Jr., Combinatorial Theory, Blaisdell Publishing Company, Waltham, Mass., 1967. (Problem 1, page 53.)
2. Beverly Ross, "A Lucas Number Counting Problem," Fibonacci Quarterly, Vol. 10 (1972), pages 325-328.
3. Herbert J. Ryser, "Combinatorial Mathematics," Number 14 of the Carus Mathematical Monographs, John Wiley, 1963.
