THE NUMBER OF SDR'S IN CERTAIN REGULAR SYSTEMS

DAVID A. KLARNER Stanford University, Stanford, California

ABSTRACT

Let $(a_1, \dots, a_k) = \overline{a}$ denote a vector of numbers, and let $C(\overline{a}, n)$ denote the $n \times n$ cyclic matrix having $(a_1, \dots, a_k, 0, \dots, 0)$ as its first row. It is shown that the sequences $(\det C(\overline{a}, n) : n = k, k + 1, \dots)$ and $(\operatorname{per} C(\overline{a}, n) : n = k, k + 1, \dots)$ satisfy linear homogeneous difference equations with constant coefficients. The permanent, per C, of a matrix C is defined like the determinant except that one forgets about $(-1)^{\operatorname{sign} \pi}$ where π is a permutation.

INTRODUCTION

While she was a student at Lowell High School, Beverly Ross [2] generalized an exercise given by Marshall Hall, Jr. [1], and found an elegant solution. Hall's exercise was posed in the context of systems of distinct representatives, or SDR's for short. Let $\overline{A} = (A_1, \dots, A_m)$ denote an m-tuple of sets, then an m-tuple (a_1, \dots, a_m) with $a_i \in A_i$ for $i = 1, \dots, m$ is an SDR of \overline{A} if the elements a_1, \dots, a_m are all distinct. Hall's exercise is the case m = 7 of the following problem posed and solved by Ross: Let $A_i = \{i, i+1, i+2\}$ denote a 3-set of consecutive residue classes modulo m for $i = 1, \dots, m$. The number of SDR's of $(A_i : i = 1, \dots, m)$ is $2 + L_m$ where L_m is the mth term of the Lucas sequence 1, 3, 4, 7, 11, \cdots defined by $L_1 = 1$, $L_2 = 3$ and $L_n = L_{n-1} + L_{n-2}$ for $n = 3, 4, \dots$. For example, it follows from this result that the solution to Hall's exercise is $2 + L_7 = 31$.

In this note we give a new proof of Ross' theorem, and indicate a generalization.

ROSS' THEOREM

We shall require a simple result which appears in Ryser [3]; namely, the number of SDR's of an m-tuple $\overline{B} = (B_1, \dots, B_m)$ of sets B_1, \dots, B_m is equal to the permanent of the incidence matrix of \overline{B} . Since this fact is an immediate consequence of definitions, we give them here. Let m and n denote natural numbers with $m \leq n$, and let B_1, \dots, B_m denote subsets of $\{1, \dots, n\}$. The incidence matrix [b(i,j)] of $\overline{B} = (B_1, \dots, B_m)$ is defined by

$$b(i,j) = \begin{cases} 1, & \text{if } j \in B_i, \\ 0, & \text{if } j \notin B_i, \end{cases}$$

for $i = 1, \dots, m$ and $j = 1, \dots, n$. The permanent of an $m \times n$ matrix [r(i, j)] is defined to be

[Oct.

per
$$[r(i,j)] = \sum_{\pi} r(i,\pi 1) r(2,\pi 2) \cdots r(m,\pi m)$$
,

where the index of summation extends over all one-to-one mappings π sending $\{1, \dots, m\}$ into $\{1, \dots, n\}$.

The incidence matrix C_m of the m-tuple $\overline{A} = (A_1, \dots, A_m)$ of sets A_1, \dots, A_m considered by Ross is an $m \times m$ cyclic matrix having as its first row $(1, 1, 1, 1, 0, \dots, 0)$; that is, the first row has its first three components equal to 1 and the rest of its components equal to 0. For example, the incidence matrix for Hall's exercise is

$$\mathbf{C}_{\mathbf{7}} = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Ross' Theorem is equivalent to showing that per $C_m = 2 + L_m$. To do this, we define three sequences of matrices:

$$\mathbf{D}_{3} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}, \quad \mathbf{D}_{4} = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix}, \quad \mathbf{D}_{5} = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 \end{bmatrix}, \quad \cdots;$$

$$\mathbf{E}_{3} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}, \quad \mathbf{E}_{4} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}, \quad \mathbf{E}_{5} = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}, \quad \cdots;$$

$$\mathbf{F}_{3} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \quad \mathbf{F}_{4} = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad \mathbf{F}_{5} = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad \cdots;$$

Let per $C_m = c_m$, per $D_m = d_m$, per $E_m = e_m$, and per $F_m = f_m$. We use the following properties of the permanent function. First, the permanent of a 0-1 matrix is equal to

 $\mathbf{268}$

1973] THE NUMBER OF SDR'S IN CERTAIN REGULAR SYSTEMS

the sum of the permanents of the minors of the 1's in a row or in a column of the matrix. Second, the permanent of a matrix is unchanged by permuting the rows or by permuting the columns of the matrix. Third, the permanent of a matrix having a row or column of 0's is equal to 0. Fourth, the permanent of a square matrix is equal to the permanent of the transpose of the matrix. Expanding per C_m in terms of the minors of the 1's in the first row of C_m , we find

$$c_m = 2d_{m-1} + e_{m-1}$$
 (m = 4, 5, ...).

Expanding per D_m in terms of the minors of the 1's in the first column of D_m , we find

(2)
$$d_m = e_{m-1} + f_{m-1}$$
 (m = 4, 5, ...).

It is easy to show that

(1)

(3)
$$e_m = e_{m-1} + e_{m-2}$$
 $(m = 4, 5, \cdots)$,

(4)
$$f_m = f_{m-1} = \cdots = f_3 = 1$$
.

Using the system (1)-(4) it is easy to show by induction that $e_m = F_{m+1}$, where F_m denotes the mth term of the Fibonacci sequence $(1, 1, 2, 3, \cdots)$, $d_m = 1 + F_m$, and $c_m = 2 + 2F_{m-1} + F_m = 2 + F_{m+1} + F_{m+1} = 2 + L_m$ for $m = 3, 4, \cdots$.

A GENERALIZATION

Let $\overline{a} = (a_1, \dots, a_k)$ denote a k-tuple of numbers and let T denote a $k \times (k-1)$ matrix having all of its entries in the set $\{0, a_1, \dots, a_k\}$. For each $n \ge k$ define an $n \times n$ matrix C(T, n) as follows:

The first k - 1 columns of C(T, n) have the upper triangular half T_1 of T in the upper right corner, and the lower triangular half T_2 of T in the lower left corner. All other entries in the first k - 1 columns of C(T, n) are 0. The remaining n - k + 1 columns of

THE NUMBER OF SDR'S IN CERTAIN RECTANGULAR SYSTEMS

C(T,n) consist of n - k + 1 cyclic shifts of the column $(a_k, \dots, a_2, a_1, 0, \dots, 0)$.

Given a $k \times (k - 1)$ matrix T having all of its entries in $\{0, a_1, \dots, a_k\}$ and having (t_1, \dots, t_{k-1}) as its top row, we expand per C(T,n) by the minors of elements in the top row of C(T,n). It turns out that these minors always have the form C(T_i, n - 1) where T_i is a $k \times (k - 1)$ matrix having all its entries in $\{0, a_1, \dots, a_k\}$. Thus, there exist $k \times (k - 1)$ matrices T, ..., T having all their entries in $\{0, a_1, \dots, a_k\}$ such that

(1)
$$\operatorname{per C}(T, n) = \sum_{i=1}^{k} t_i \operatorname{per C}(T_i, n - 1)$$
,

where $t_k = a_k$. (If we are dealing with determinants, $(-1)^i$ must be put into the summand.)

We have an equation like (1) for each matrix T; hence, we have a finite system of equations if we let T range over all possible $k \times (k - 1)$ matrices with their entries in $\{0, a_1, \cdots, a_k\}$. The existence of this system of difference equations implies the existence of a difference equation satisfied by the sequence (per C(T,n) : n = k, k + 1, ...) for each fixed matrix T. (This is also true for the sequence (det C(T,n) : n = k, k + 1, ...)) A consequence of the foregoing is the result proved by Ross, but evidently much more is true.

Let r_1, \dots, r_n denote natural numbers with $1 = r_1 < \dots < r_n = k$, and for each natural number $m \ge k$ define the collection $\overline{A}_m = \{A_1, \dots, A_m\}$ of sets A_i of residue classes modulo m where

$$A_i = \{r_1 + i, \dots, r_n + i\}.$$

Let a(m) denote the number of SDR's of \overline{A}_m , then the sequence $(a(m) : m = k, k + 1, \cdots)$ satisfies a linear homogeneous difference equation with constant coefficients. The proof of this fact follows the proof of Ross' Theorem given in the preceding section.

Note that our existence theorem has a constructive proof, but we do not have an explicit expression for a difference equation satisfied by the sequence (per $C(T,n) : n = k, k + 1, \dots$). This gives rise to a host of interesting research problems. For example, give a difference equation satisfied by the sequence (per $C(k,n) : n = k, k + 1, \dots$) where C(k,n) is the cyclic $n \times n$ matrix having as its first row $(1, \dots, 1, 0, \dots, 0)$ consisting of k 1's followed by n - k 0's.

REFERENCES

- 1. Marshall Hall, Jr., <u>Combinatorial Theory</u>, Blaisdell Publishing Company, Waltham, Mass., 1967. (Problem 1, page 53.)
- 2. Beverly Ross, "A Lucas Number Counting Problem," Fibonacci Quarterly, Vol. 10 (1972), pages 325-328.
- 3. Herbert J. Ryser, "Combinatorial Mathematics," Number 14 of the <u>Carus Mathematical</u> Monographs, John Wiley, 1963.

 $\mathbf{270}$