MULTIPLE REFLECTIONS
 LEO MOSER and MAX WYMAN
 University of Alberta, Edmonton, Alberta, Canada

Let us consider a set of k parallel plane prisms and a mirror arranged as follows:

Let $f_{r}(n)$ be the number of paths which start at the top of the plate and reach plate r after n upward reflections. Further, let $A=\left(a_{i j}\right)$ be a $k \times k$ enumerating matrix such that
(1.1)

$$
f_{r}(n)=\sum_{j=1}^{k} a_{r j} f_{j}(n-1)
$$

If $F(n)$ denotes the one column matrix

$$
F(n)=\left[\begin{array}{c}
f_{1}(n) \tag{1.2}\\
f_{2}(n) \\
\ldots \\
f_{k}(n)
\end{array}\right]
$$

then (1.1) can be written

$$
F(n)=A F(n-1) .
$$

Hence, by iteration we have
$F(n)=A^{n} F(0)$.

Thus (1.4) provides an explicit solution for $F(n)$ in terms of $F(0)$. This form is not suitable to compute the asymptotic behavior of $F(n)$ for large values of n. We now derive a second explicit form by means of which the asymptotic behavior is easily calculated.

The characteristic equation of the matrix A is

$$
\begin{equation*}
|\lambda I-A|=\lambda^{k}+c_{k-1} \lambda^{k-1}+\cdots+c_{0}=0 \tag{1.5}
\end{equation*}
$$

Let us assume that the roots of (1.5) are $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{k}$ and that these roots are distinct. The case of multiple roots can also be treated easily by the method we shall use.

Since every matrix A satisfies its own characteristic equation we also have

$$
\begin{equation*}
A^{k}+c_{k-1} A^{k-1}+\cdots+c_{0} I=0 \tag{1.6}
\end{equation*}
$$

Multiplying by A^{n-k}, we have

$$
\begin{equation*}
A^{n}+c_{k-1} A^{n-1}+\cdots+c_{0} A^{n-k}=0 \tag{1.7}
\end{equation*}
$$

From (1.4) and (1.7) we immediately have

$$
\begin{equation*}
F(n)+c_{k-1} F(n-1)+\cdots+c_{0} F(n-k)=0 \tag{1.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{f}_{\mathrm{r}}(\mathrm{n})+\mathrm{c}_{\mathrm{k}-1} \mathrm{f}_{\mathrm{r}}(\mathrm{n}-1)+\cdots+\mathrm{c}_{0} \mathrm{f}_{\mathrm{r}}(\mathrm{n}-\mathrm{k})=0 . \tag{1.9}
\end{equation*}
$$

However, Eq. (1.9) depends for its solution on the equation

$$
\begin{equation*}
\lambda^{k}+c_{k-1} \lambda^{k-1}+\cdots+c_{0}=0 . \tag{1.10}
\end{equation*}
$$

Hence, the general solution for (1.9) is

$$
\begin{equation*}
\mathrm{f}_{\mathrm{r}}(\mathrm{n})=\sum_{\mathrm{j}=1}^{\mathrm{k}} \mathrm{~B}_{\mathrm{rj}} \lambda_{\mathrm{j}}^{\mathrm{n}} \tag{1.11}
\end{equation*}
$$

where the constants $B_{r j}$ do not depend on n. Since k is considered fixed we may consider the matrices $1, \mathrm{~A}, \cdots, \mathrm{~A}^{\mathrm{k}-1}$ as having been computed. Hence from (1.4) and the boundary conditions we may consider $f_{r}(0), f_{r}(1), \cdots, f_{r}(k-1)$ as being known. Hence from (1.11) we will have k equations that determine $B_{r 1}, B_{r 2}, \cdots, B_{r k}$. Explicit expressions for these constants can be given. From (1.10) we can easily see the asymptotic behavior of $f_{r}(n)$. Let us write λ_{j} in the form $\lambda_{r}=r_{j} \exp \left(i \theta_{j}\right)$. Further let us assume $r_{1}=r_{2}=\cdots=r_{p}$ $>\mathrm{r}_{\mathrm{p}+1}>\mathrm{r}_{\mathrm{p}+2}>\ldots>\mathrm{r}_{\mathrm{k}}$. Clearly,

$$
\begin{equation*}
f_{r}(n) \sim r_{1}^{n} \sum_{j=1}^{k} B_{i j} \exp \left(i n \theta_{j}\right) \tag{1.12}
\end{equation*}
$$

If $p=1$ then

$$
\begin{equation*}
\mathrm{f}_{\mathrm{r}}(\mathrm{n}) \sim \lambda_{1}^{\mathrm{n}} \mathrm{~B}_{\mathrm{r} 1} \tag{1.13}
\end{equation*}
$$

$$
\mathrm{A}=\left[\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \tag{1.14}\\
1 & 2 & 2 & \cdots & 2 \\
1 & 2 & 3 & \cdots & 3 \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
1 & 2 & 3 & \cdots & \mathrm{k}
\end{array}\right]
$$

the characteristic determinant
(1.15)

$$
D_{k}(\lambda)=|\lambda I-A|
$$

can be shown to satisfy the recurrence relation

$$
\begin{equation*}
D_{k}(\lambda)=(1-2 \lambda) D_{k-1}(\lambda)-\lambda^{2} D_{k-2}(\lambda), \quad D_{0}(\lambda)=1, D_{1}(\lambda)=1-\lambda . \tag{1.16}
\end{equation*}
$$

The solution of (1.16) is easily obtained to be

$$
D_{k}(\lambda)=H\left(\frac{(1-2 \lambda)+\sqrt{(1-2 \lambda)^{2}-4 \lambda^{2}}}{2}\right)^{k}
$$

(1.17)

$$
+K\left(\frac{(1-2 \lambda)-\sqrt{(1-2 \lambda)^{2}-4 \lambda^{2}}}{2}\right)^{\mathrm{k}}
$$

$$
=\mathrm{HR}_{1}+\mathrm{KR}_{2}
$$

where H, K are constants depending on λ but not on k. Filling the boundary conditions, we find

$$
\begin{equation*}
D_{k}(\lambda)=\left(R_{1}+R_{2}\right) / 2+\left(R_{1}-R_{2}\right) /\left(2 \sqrt{(1-2 \lambda)^{2}-4 \lambda^{2}}\right) \tag{1.18}
\end{equation*}
$$

where R_{1} and R_{2} are defined in (1.17).
In order to find the roots of $D_{k}(\lambda)=0$ we make the substitution

$$
\begin{equation*}
\lambda=\frac{1}{2(1+\cos \theta)}=\frac{1}{4} \sec ^{2} \frac{\theta}{2} . \tag{1.19}
\end{equation*}
$$

Hence (1.19) becomes

$$
\begin{gathered}
\cos k \theta+\frac{1+\cos \theta}{\sin \theta} \sin k \theta=0 \\
\frac{\sin \left(k+\frac{1}{2}\right) \theta}{\sin \theta} \cos \frac{1}{2} \theta=0
\end{gathered}
$$

Obviously, the roots of (1.19) are

$$
\begin{equation*}
\theta=\frac{\mathrm{s} \pi}{\mathrm{k}+\frac{1}{2}}, \quad \mathrm{~s}=1,2, \ldots \tag{1.20}
\end{equation*}
$$

where $s=0$ must be excluded because of the denominator. Hence the roots of $D_{k}(\lambda)=0$ are given by

$$
\begin{equation*}
\lambda=\frac{1}{4} \sec ^{2}\left(\frac{\mathrm{~s} \pi}{2 \mathrm{k}+1}\right), \quad \mathrm{s}=1,2, \cdots \tag{1.21}
\end{equation*}
$$

Obviously only k are distinct, and arranged in order of magnitude we have

$$
\begin{equation*}
\lambda_{1}=\frac{1}{4} \sec ^{2}\left(\frac{\mathrm{k} \pi}{2 \mathrm{k}+1}\right), \quad \lambda_{2}=\frac{1}{4} \sec ^{2}\left(\frac{(\mathrm{k}-1) \pi}{2 \mathrm{k}+1}\right), \cdots, \lambda_{\mathrm{k}}=\frac{1}{4} \sec ^{2}\left(\frac{\pi}{2 \mathrm{k}+1}\right) \tag{1.22}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\mathrm{f}_{\mathrm{r}}(\mathrm{n}) \sim\left(\frac{1}{2} \sec \left(\frac{\pi}{2 \mathrm{k}+1}\right)\right)^{\mathrm{n}} \mathrm{~B}_{\mathrm{r} 1} \tag{1.23}
\end{equation*}
$$

TWO NUMERICAL CASES
Case 1. $\mathrm{k}=2$.

$$
\begin{gathered}
\mathrm{D}_{2}(\lambda)=\left|\begin{array}{cc}
1-\lambda & 1 \\
1 & 2-\lambda
\end{array}\right|=\lambda^{2}-3 \lambda+1=0, \\
\lambda_{1}=\frac{3+\sqrt{5}}{2}, \quad \lambda_{2}=\frac{3-\sqrt{5}}{2}, \\
\mathrm{f}_{1}(0)=0, \quad \mathrm{f}_{2}(0)=1, \quad \mathrm{f}_{1}(1)=1, \quad \mathrm{f}_{2}(1)=2, \\
\mathrm{f}_{1}(\mathrm{n})=\mathrm{B}_{11} \lambda_{1}^{\mathrm{n}}+\mathrm{B}_{12} \lambda_{2}^{\mathrm{n}}, \\
\left\{\begin{array}{l}
0=\mathrm{B}_{11}+\mathrm{B}_{12} \\
1=\mathrm{B}_{11} \lambda_{1}+\mathrm{B}_{12} \lambda_{2}
\end{array}\right. \\
\therefore \quad \mathrm{B}_{11}=\frac{1}{\lambda_{1}-\lambda_{2}} \quad \text { and } \quad \mathrm{B}_{12}=\frac{1}{\lambda_{1}-\lambda_{2}} \quad . \\
\therefore \quad \mathrm{f}_{1}(\mathrm{n})=\frac{1}{\sqrt{5}}\left(\lambda_{1}^{\mathrm{n}}-\lambda_{2}^{\mathrm{n}}\right)=\frac{1}{\sqrt{5}} \lambda_{1}^{\mathrm{n}}\left(1-\lambda_{2}^{2 \mathrm{n}}\right) \sim \frac{1}{\sqrt{5}}\left(\frac{3+\sqrt{5}}{2}\right)^{\mathrm{n}}
\end{gathered}
$$

Similarly,

$$
\begin{gathered}
\mathrm{f}_{2}(\mathrm{n})=\mathrm{B}_{21} \lambda_{1}^{\mathrm{n}}+\mathrm{B}_{22} \lambda_{2}^{\mathrm{n}} \\
1=\mathrm{B}_{21}+\mathrm{B}_{22} \\
2=\mathrm{B}_{21} \lambda_{1}+\mathrm{B}_{22} \lambda_{2} \\
\therefore \quad \mathrm{~B}_{21}=\frac{2-\lambda_{2}}{\lambda_{1}-\lambda_{2}}=\frac{1+\sqrt{5}}{2 \sqrt{5}}, \quad \mathrm{~B}_{22}=\frac{2-\lambda_{1}}{\lambda_{2}-\lambda_{1}}=-\frac{1-\sqrt{5}}{2 \sqrt{5}} . \\
\therefore \mathrm{f}_{2}(\mathrm{n})=\left(\frac{1+\sqrt{5}}{2 \sqrt{5}}\right)\left(\frac{3+\sqrt{5}}{2}\right)^{\mathrm{n}}-\left(\frac{1-\sqrt{5}}{2 \sqrt{5}}\right)\left(\frac{3-\sqrt{5}}{2}\right)^{\mathrm{n}}=\frac{1}{\sqrt{5}}\left[\alpha^{2 \mathrm{n}+1}-\beta^{2 \mathrm{n}+1}\right]=\mathrm{F}_{2 \mathrm{n}+1}
\end{gathered}
$$

which gives the complete solution.
Case 2. $\mathrm{k}=3$.

$$
\begin{array}{rll}
\lambda_{1}=\frac{1}{4} \sec ^{2}\left(\frac{3 \pi}{7}\right), & \lambda_{2}=\frac{1}{4} \sec ^{2}\left(\frac{2 \pi}{7}\right), & \lambda_{3}=\frac{1}{4} \sec ^{2}\left(\frac{\pi}{7}\right) \\
\mathrm{f}_{1}(0)=0 & \mathrm{f}_{2}(0)=0 & \mathrm{f}_{3}(0)=1 \\
\mathrm{f}_{1}(1)=1 & \mathrm{f}_{2}(1)=2 & \mathrm{f}_{3}(1)=3 \\
\mathrm{f}_{1}(2)=6 & \mathrm{f}_{2}(2)=11 & \mathrm{f}_{3}(2)=14
\end{array} .
$$

Thus

$$
\begin{aligned}
\mathrm{f}_{3}(\mathrm{n}) & =\mathrm{B}_{31} \lambda_{1}^{\mathrm{n}}+\mathrm{B}_{32} \lambda_{2}^{\mathrm{n}}+\mathrm{B}_{33} \lambda_{3}^{\mathrm{n}} \\
1 & =\mathrm{B}_{31}+\mathrm{B}_{32}+\mathrm{B}_{33} \\
3 & =\mathrm{B}_{31} \lambda_{1}+\mathrm{B}_{32} \lambda_{2}+\mathrm{B}_{33} \lambda_{3} \\
14 & =\mathrm{B}_{31} \lambda_{1}^{2}+\mathrm{B}_{32} \lambda_{2}^{2}+\mathrm{B}_{33} \lambda_{3}^{2}
\end{aligned}
$$

Solving simultaneously,

$$
\mathrm{B}_{31}=\frac{\lambda_{2} \lambda_{3}-3\left(\lambda_{2}+\lambda_{3}\right)+14}{\left(\lambda_{1}-\lambda_{2}\right)\left(\lambda_{1}-\lambda_{3}\right)}
$$

Calculating $\lambda_{1}, \lambda_{2}, \lambda_{3}$ and substituting above gives $B_{31} \doteq 0.537$, so that

$$
\mathrm{f}_{3}(\mathrm{n}) \sim 0.537\left(\frac{1}{2} \sec \left(\frac{3 \pi}{7}\right)\right)^{2 n}
$$

[Continued from page 301.]

Page 49, Eq. (33): Please change the last number on the line from " 3 " to "1."
Page 49, Line following Eq. (34): Please raise $"(\bmod 3) "$ to the main line of type.
Page 49, line 6 from bottom: Please insert brackets around $X(X-1), X$.
Page 53, line 2 from bottom: In the third column from the left, please change the number to read: " 2750837603 ."

