NOTES ON BINOMIAL COEFFICIENTS: IV - PROOF OF A CONJECTURE OF GOULD ON THE GCD'S OF TWO TRIPLES OF BINOMIAL COEFFICIENTS
 DAVID SINGMASTER
 Polytechnic of the South Bank, London, and
 Instituto Matematico, Pisa, Italy*

Let n and k be integers, $\mathrm{n} \geq 2$, and $1 \leq \mathrm{k} \leq \mathrm{n}-1$. Hoggatt has recently noted that

$$
\binom{n-1}{k-1}\binom{n}{k+1}\binom{n+1}{k}=\binom{n-1}{k}\binom{n}{k-1}\binom{n+1}{k+1} .
$$

Gould [1] conjectures that

$$
\operatorname{GCD}\left(\binom{n-1}{k-1},\binom{n}{k+1},\binom{n+1}{k}\right)=\operatorname{GCD}\left(\binom{n-1}{k},\binom{n}{k-1},\binom{n+1}{k+1}\right)
$$

In this note, I shall prove this conjecture and obtain the corollary that these GCD's are equal to

$$
\operatorname{GCD}\left(\binom{n-1}{k-2},\binom{n-1}{k-1},\binom{n-1}{k},\binom{n-1}{k+1}\right)
$$

Before proceeding, let us note that the six binomial coefficients involved form a hexagon about $\binom{n}{k}$ in the Pascal triangle. The two groups of three involved are the two equilateral triangles of this hexagon.

Theorem. For $\mathrm{n} \geq 2$, and $1 \leq \mathrm{k} \leq \mathrm{n}-1$, we have that

$$
\operatorname{GCD}\left(\binom{n-1}{k-1},\binom{n}{k+1},\binom{n+1}{k}\right)=\operatorname{GCD}\left(\binom{n-1}{k},\binom{n}{k-1},\binom{n+1}{k+1}\right) .
$$

Proof. Let the two GCD's be G_{1} and G_{2}, respectively. We write out the involved section of the Pascal triangle as:
a
b
c
d
$a+b$
$b+c$ $c+d$

$$
a+2 b+c \quad b+2 c+d
$$

where $b+c=\binom{n}{k}$, etc. Then $G_{1}=\operatorname{GCD}(b, c+d, a+2 b+c)$ and $G_{2}=\operatorname{GCD}(c, a+b$, $b+2 c+d$). (If $k=1$ (or $k=n-1$) then $a=0$ (or $d=0$). The following argumentstill holds in these cases, but one can see that $G_{1}=G_{2}=1=G C D$ (a, b, c, d) directly.)

We shall show that $p^{e} \mid G_{1}$ if and only if $p^{e} \mid G_{2}$, for any prime power p^{e}.

[^0]Case 1. If $p^{e} \mid b$ and $p^{e} \mid c$, then $p^{e} \mid G_{1}$ iff $p^{e} \mid(a, d)$ iff $p^{e} \mid G_{2}$.
Case 2. If $p^{e} \nmid b$ and $p^{e} \nmid c$, then $p^{e} \nmid G_{1}$ and $p^{e} \nmid G_{2}$.
Case 3. If $p^{e} \mid b$ and $p^{e} \nmid c$, then $p^{e} \nmid G_{2}$. Suppose that $p^{e} \mid G_{1}$. Then we have $p^{e} \mid c+d$ and $p^{e} \mid a+c$, whence $p^{e} \nmid a$ and $p^{e} \nmid d$. We claim that the four conditions $p^{e} \nmid a, p^{e} \mid b, p^{e} \nmid c$ and $p^{e} \mid c+d$ are inconsistent. For this we require a lemma.

Lemma. For $0 \leq k<n$,

$$
\mathrm{p}^{\mathrm{e}} \left\lvert\,\binom{\mathrm{n}}{\mathrm{k}} \quad\right. \text { and } \quad \mathrm{p}^{\mathrm{e}} \nmid\binom{\mathrm{n}}{\mathrm{k}+1}
$$

implies $\mathrm{p} \mid \mathrm{k}+1$.
Proof. Let $n=\Sigma_{a_{i}} p^{i}$ and $b=\Sigma b_{i} p^{i}$ be the p-ary expansions of n and k. A result of Glaisher [2, Corollary 6.1] asserts that

$$
\mathrm{p}^{\alpha} \|\binom{\mathrm{n}}{\mathrm{k}}
$$

if and only if α is the number of borrows in the p-ary subtraction $n-k$. Consider now b_{0} and a_{0}. If $0 \leq b_{0}<a_{0}$ or $a_{0}<b_{0}<p-1$, then $n-k$ and $n-(k+1)$ have the same number of borrows. If $\mathrm{b}_{0}=\mathrm{a}_{0}<\mathrm{p}-1$, then $\mathrm{n}-(\mathrm{k}+1)$ has more borrows than $\mathrm{n}-\mathrm{k}$. Hence $b_{0}=p-1$ is the only case consistent with

$$
\mathrm{p}^{\mathrm{e}} \left\lvert\,\binom{\mathrm{n}}{\mathrm{k}} \quad\right. \text { and } \quad \mathrm{p}^{\mathrm{e}} \nmid\binom{\mathrm{n}}{\mathrm{k}+1} .
$$

Corollary. For $0 \leq \mathrm{k}<\mathrm{n}$,

$$
p^{e} \mathcal{X}\binom{n}{k} \quad \text { and } \quad p^{e} \left\lvert\,\binom{ n}{k+1}\right.
$$

implies $\mathrm{p} \mid \mathrm{n}-\mathrm{k}$.
$\begin{aligned} & \text { es } p \mid n-k . \\ & \text { Proof. Use }\end{aligned}\binom{n}{k}=\binom{n}{n-k}$ and the Lemma.
Returning to the Theorem, we have

$$
p^{e} f\binom{n-1}{k-2}=a \quad \text { and } \quad p^{e} \left\lvert\,\binom{ n-1}{k-1}=b\right.
$$

hence $\mathrm{p} \mid \mathrm{n}-\mathrm{k}+1$, and we have

$$
\mathrm{p}^{\mathrm{e}} \left\lvert\,\binom{\mathrm{n}-1}{\mathrm{k}-1}=\mathrm{b} \quad\right. \text { and } \quad \mathrm{p}^{\mathrm{e}} \left\lvert\,\binom{\mathrm{n}-1}{\mathrm{k}}=\mathrm{c}\right.
$$

hence $p \mid k$. Thus $p \mid n+1$. Now $c+d=\binom{n}{k+1}^{1}$ Let $n=\Sigma_{a_{i}} p^{i}$ and $k+1=\Sigma_{b_{i}} p^{i}$ be the p-ary expansions. From $p \mid n+1$, we have $a_{0}=p-1$ and from $p \mid k$, we have $b_{0}=$ 1. Hence $n-(k+1)$ has the same number of borrows as $(n-1)-k$. From Glaisher's result and

$$
\mathrm{p}^{\mathrm{e}} \ell\binom{\mathrm{n}-1}{\mathrm{k}}=\mathrm{c}
$$

we deduce that $p^{e} \not /\binom{n}{k+1}=c+d$, which demonstrates the claimed inconsistency. Thus, in Case 3, $p^{e} \nmid G_{1}$ and $p^{e} \nless G_{2}$.

Case 4. If $\mathrm{p}^{\mathrm{e}} \nmid \mathrm{b}$ and $\mathrm{p}^{\mathrm{e}} \mid \mathrm{c}$, then the symmetry of the binomial coefficients converts this to Case 3 and this completes the theorem.

Corollary. $\mathrm{G}_{1}=\mathrm{G}_{2}=\mathrm{GCD}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})$.

Proof. We have $G_{1}=G_{2}$ from the Theorem and so we have $G_{1}\left|b, G_{1}\right| c, G_{1} \mid c+d$, $G_{1}\left|d, G_{1}\right| a$ and $G_{1} \mid \operatorname{GCD}(a, b, c, d)$. Conversely, $\operatorname{GCD}(a, b, c, d)$ clearly divides G_{1}.

REFERENCES

1. H. W. Gould, "A New Greatest Common Divisor Property of the Binomial Coefficients," Notices Amer. Math. Soc., 19 (1972) A-685, Abstract 72T-A248.
2. D. Singmaster, Divisibility of Binomial and Multinomial Coefficients by Primes and Prime Powers, to appear.

LETTERS TO THE EDITORS

Dear Editors:

On page 165 of Professor Coxeter's Introduction to Geometry (New York, 1961), we read: "In 1202, Leonardo of Pisa, nicknamed Fibonacci ("son of good nature"), came across his celebrated sequence"

This translation of Leonardo's nickname differs, of course, from the one I've seen in the Quarterly.

Who can solve the historic mystery for us?
Les Lange
Dean, School of Science San Jose State University San Jose, California

Dear Editors:

Thank you for the reprints I have just received. Sorry to bother you again, but somehow the main sentence from "An Old Fibonacci Formula and Stopping Rules," (Vol. 10, No. 6) was omitted. The formula is

$$
\sum_{0}^{\infty} \frac{F(n)}{2^{n+1}}=1
$$

and it is based on Wald's proof that the defined stopping rule is a real stopping rule (the process terminates after a final number of steps with probability 1).
R. Peleg

Jerusalem, Israel

[^0]: *This work was supported by a research fellowship of the Italian National Research Council.

