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1. INTRODUCTION 

The Zeckendorf Theorem states that every positive integer can be uniquely represented 
as the sum of distinct Fibonacci numbers if no two consecutive Fibonacci numbers are used 
in any given sum. In fact, in an ear l ie r paper [ l ] , it was shown that every positive integer 
can be uniquely represented as the sum from k copies of distinct members of the general-
ized Fibonacci sequence formed by evaluating the Fibonacci polynomials at x = k, if no two 
consecutive members of the sequence with coefficient k are used in any given sum. Now, 
this resul t is extended to include sequences formed from generalized Fibonacci polynomials 
evaluated at x = k. 

2. THE GENERALIZED ZECKENDORF THEOREM FOR THE TRIBONACCI POLYNOMIALS 
The Tribonacci polynomials have been defined in [2] as T 1(x) = T0(x) = 0, Tt(x) = 

1, T lo(x) = x2T ,0(x) + xT ^..(x) + T (x). Let us say that the Tribonacci polynomials a re n+d n+z n+i n 
evaluated at x = k. Then the number sequence is U = U0 = 0, UA = 1, U2 = k2, 

U ^ = k2U ^ + kU _,, + U . n+3 n+2 n+1 n 

Theorem 2.1. Let U be the n member of the sequence formed when the Tribonacci 
polynomials are evaluated at x = k. Then every positive integer N has a unique represen-
tation in the form 

N = €1V1 + e2V2 + . . - + y J n 

with the constraints 

and, for i > 2, 

et = 0, 1 , 2, . . . , k2 - 1 , 

e. = 0, 1, 2, •-• , k2 i 
l 

If e2 = k2, then et = 0, 1, • • • , k - 1 ; 
If £ = k2, then £. = 0, 1, 2, • • • , k ; 
If €. f 1 = k2 and e. = k, then e. = 0. l + l l l - l 

We begin with three useful lemmas , which can be proved by mathematical induction or 
by considering how to represent the specific integers given using the constraints of Theorem 
2.1. 

Lemma 1. For k > 2, 
U 3n " * = k 2<U3n-l + U 3n-4 + - + U*> + k ( U 3n -2 + U 3n-5 + - + U*> " 1 

= k 2 ( U 3 n - l + ' • • + U8) + « U 3 n _ 2 + U 3 n _ 5 + • • • + U4) + (k - l)Ut . 

399 
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Lemma 2. For k > 2, 
U0 ,- - 1 = k2(U0 + UQ 0 + . . . + U3) + k(UQ n + Uc . + . . . + U2) . 3n+l 3n 3n-3 6 3n- l 3n-4 L 

Lemma 3. For k ^ 2, 

U3n+2 " 1 = k 2 ( U 3 n + l + U 3n-2 + ' ' ' + U*> + k ( U 3 n + U 3n-3 + ' ' ' + U3> + & " ^ • 

These lemmas are almost self-explanatory. Now for the utility of the three lemmas in the 
proof of Theorem 2.1. 

Assume that every integer s £ U 2 - 1 has a unique admissible representation. By 
using rU„ 2 for r = 1, 2, • • • , k2, one can get a representation for s < (k2 - 1)U + 2 + 
(U - 1) without using k2U . If we now add another U , then k2U„ + is r e p r e -
sentable but now the representation for U„ „ - 1 cannot be used since U~ - has too large 
a coefficient. Let k2Uq + ? — s be representable in admissible form. Now we gradually 
build up to (k - 1)U0 , . , and since k2 = e.,. and e. = k - 1, so that there are no r e s t r i c -

oR+l 1+i 1 
tions on the ear l ie r coefficients because we can still obtain U0 , - - 1 without further conflict. 

3n+l 
Thus s < k2u 3 n + 2 + (k - l ) U 3 n + 1 + U 3 n + 1 - 1 = k2u 3 n + 2 + k U 3 n + 1 - 1 is obtainable. We cannot now add another UQ ,- since e. = k2, e. = k, so that e . n = 0 and we Can-on' x l'± 1 1 — JL 

not now use the representation of Un ,- - 1, but we now achieve, without U0 , the sum as ^ 3n+l 3n 
great as Uq - 1. Now we have a representation up to s £ k2LL + 2 + kUq + 1 + LL - 1 = 
Uq +o - 1» which completes the proof of Theorem 2.1 by mathematical induction. 

3. HIERARCHY OF RESULTS: ZECKENDORF'S THEOREM 
FOR THE GENERALIZED FIBONACCI POLYNOMIAL SEQUENCES 

Define the generalized Fibonacci polynomials as in [2] by 

P_( r_2 )(x) = P_( r_3 )(x) = . . . = P_1(x) = P0(x) = 0, P^x) = 1, P2(x) = x1*"1, 

P M (x) = Kr'1-P ^ Ax) + x r " 2 P _, 0(x) + ••• + P (x) . n+r n+r-1 n+r-2 n 

Let U = P (k), the n member of the sequence formed by evaluating the generalized Fib-
onacci polynomials at x = k. We state the Zeckendorf Theorem for selected values of r. 

Theorem 3.1. The Binary Case, r = 1. Let P (x) = x11"1, or , P0(x) = 0, Pt(x) = 
1, P2(x) = x, P +1(x) = xP (x). Now, if U = P (k) = kn~ , then any positive integer N 
has a unique representation in the form 

N = eAJi + €2U2 + • • • + € U 1 1 t t n n 

if and only if e. = 0, 1, 2, • • • , k - 1. 
Theorem 3.1 provides, for example, the representation of a number in decimal nota-

tion. Theorem 3.2 is the generalized Zeckendorf Theorem proved in [2] , and Theorem 3.3 
is Theorem 2.1 restated. 

Theorem 3.2. The Fibonacci Case, r = 2. Let P (x) = xP +1(x) + P (x), P0(x) = 
0, Pj(x) = 1. Let U = P (k). Then every positive integer N has a unique representation 
in the form N = e ^ + £2U2 + • - • + e U if and only if et = 0, 1, 2, • • • , k - 1, and for 
i > 2 

' e. = 0, 1, 2, . . - , k ; 



1973] GENERALIZED FIBONACCI POLYNOMIALS AND ZECKENDORF'S THEOREM 401 

If e. = k, then e. 1 = 0 . 
l l - l 

Theorem 3.3. The Tribonacci Case, r = 3. Let P Ax) = P0(x) = 0, Pj(x) = 1, and 
P n + 3 ^ = x 2 p n+2^ x ) + x P n + l ^ + Pn^5 a n d l e t U n = P n ^ ' T h e n e v e r y positive integer 
N has a unique representation in the form N = q l ^ + e2U2 + • • • + e u if and only if 

et = 0, 1, 2, - . . , k2 - 1 
and for i > 2, 

€. = 09 1, 2, • • • , k 2 ; 
If e2 = k2

r then et = 0, 1, • • • , k - 1; 
If € = k2

s then e. = 0, 1, 2, ••• , k; 
If e.,^ = k2 and e. = k, then e. . = 0. i + l l l - l 

Theorem 3.4. The Quadranacci Case, r = 4. Let P (x) = P (x) = P0(x) = 09 

Pt(x) = 1, P2(x) = x3, Pn + 4(x) = x3Pn + 3(x) +x 2 P n + 2 (x) +xP n + 1 (x ) + Pn(x). Let Un = Pn(k), 
k > 1. Then any positive integer N has a unique representation in the form 

N = CiUi + e2U2 + . . - + e U 
1 1 L £ n n 

if 
et = 0, 1, 2, • • • , k3 - 1 , 

and, for i ^. 2, 
e. = 0, 1, 2, ••• , k3 ; 

If e2 = k3, then et = 0, 1, 2, - • - , k2 - 1 ; 

If e2 = k3 and e2 = k2> ^en €j = 0, 1, 2, • • • , k - 1 ; 
If ei+2 = k3, then €. + 1 = 0, 1, 2, • • • , k2 ; 
If ei+2 = k3 and €. + 1 = k2, then e. = 0, 1, 2, • • • , k; 
If e .+ 2 = k3, e . + 1 = k2, and e. = k, then e._1 = 0. 

Theorem 3.5. The Pentanacci Case, r = 5. Let P Q(x) = P Q(x) = P ^x) = P0(x) = 

0, Pt(x) = 1, P2(x) = x4, and 
-3V ' -2N ' - l v 

P n + 5 ( x ) = * * n 4 4 W + x 3 W x ) + x 2 l W x ) + X W x ) + Pn<x)> 
and then let U = P (k). Then every positive integer N can be represented uniquely in the 

form 

N = ejUi + e2U2 + • • • + €nUn 

if 

£ l = 0, 1, 2, • . . , k4 - 1 
and, for i > 2, e. = 09 1, 2, • • • , k4 

where 
If e2 = k4 , then et = 0, 1, 2, • • • , k3 - 1; 
If e3 = k4 and e2 = k3 , then e4 = 0, 1, • • • , k2 - 1 ; 
If e4 = k4 and ez = k3 and e2 = k2, then et = 0, 1, 2, • • 8 , k - 1; 
If e . + 3 = k4 , then e.+ 2 = 0, 1, • • • , k3 ; 
If e . + 3 = k4 and e.+ 2 = k3, then e . + 1 = 0, 1, 2, • • • , k2 ; 
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If e . + 3 = k4, e .+ 2 = k3, and e R ] = k2, then e. = 0, 1, • • • , k ; 
I f £i+3 = k 4 j £i+2 = k 3 j e i+l = k 2 ' a n d €i = k ' t h e n €i - l = ° ' 

A proof by mathematical induction of Theorem 3.5 requires five lemmas given below. 
Lemma 1. 

U_ - 1 = k4U' , + k3U,_ 0 + k2U- 0 + kUc A 5n 5n- l 5n-2 5n-3 5n-4 
+ k4U' a + k3U,- _ +' k2Uc Q + ku n 5n-6 5n-7 5n-8 5n-9 
+ • « • + . . . + . . . + 

+ k*U4 + k3U3 + k2U2 + (k - l)Ui . 

Lemma 2. 
U. _,_- - 1 = k4Ur + k3Uc n + k2LL 0 + kUc . 5n+l bn 5n- l 5n-2 5n-3 

+ k*U- . + k3U, a + k2Vn Q + kU_ Q bn-5 5n-6 5n-8 5n-9 
+ . . . + . . . + . . . + 

+ k4U5 + k3U4 + k2U3 + kU2 + 0(Ui - 1) . 

Lemma 3. 
U , _ - 1 = k4Ur A1 + k3U + k2Uc , + kU- 0 

5n+2 bn+1 5n 5n- l 5n-2 
+ k4Ur , + k3!^ - + k2UK a + kUr „ bn-4 5n-5 5n-6 5n-7 
+ • • • + • • • + • • • + 

+ k4U6 + k3U5 + k2U4 + kU3 + (k4 - l)Vt . 

Lemma 4. 
Uc ^Q - 1 = k4LL ^ + k3Uc _ + k2Uc + kU_ n 5n+3 5n+2 5n+l 5n 5n- l 

+ k4!^ 0 + k3Uc , + k2UR . + kUc a 5n-3 5n-4 5n-5 5n-6 

+ . . . + . . . + . . . + . . . 

+ k4!^ + k3U6 + k2U5 + kU4 

+ k4U2 + (k3 - DUj 

Lemma 5. 
U_ ,. - 1 = k4!^ , 0 + k3!^ , 0 + k2UK ,- + kU_ 5n+4 5n+3 5n+2 5n+l 5n 

+ k*UK - + k*V- . + k2UK Q + kU^ A 5n-l 5n-2 5n-3 5n-4 
+ . . . + . . . + . . . + 

+ J^Ug + k3U7 + k2U6 + kU5 

+ k4!^ + k3U2 + (k2 - l)Ut 

Theorem 3.6. Let P_(r_2)W = P_(r_g\(x) = ••• = P_x(x) = po(x) = °» pi(x> = !» 
P2(x) = xT~l, and P _, (x) = x r - l p _,_ Ax) + x r " 2 P _,_ Ax) + •- • + P (x). and then let 4 n+r n+r-1 n+r-2 n 
U = P (k). Then every positive integer N has a unique representation in the form 
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if 

and., for i > 2, 

where 

N = eiUi + e2U2 + • • • + e U 1 1 L L n n 

et = 0, 1 , 2 , • • - , k r _ 1 - 1 

e. = 0, 1, 2, ' • - , k r _ 1 

If e2 = k1""1
 s then et = 08 1, 2, • • • , k r " 2 - 1; 

If e3 = k1""1 and e2 = k r ~ 2 , then et = 0, 1, 2, • • • , k r ~ 3 - 1; 

If e r _ 1 = k "" , er_2 = k " , • • • , and e2 = k2, then q = 0, 1, 2, • • • , k - 1; 
I f V r - 2 = ^ " . t h e n V r - 3 = 0. 1. • • • f k^2; 

If Vr_2 = k a n d e
i+r-3 = k » t h e n e i+r-4 = °' l s ' ' ' • k ; 

If ei-fr_2 = k r " ' €i+ r -3 = ^ ' ° " ' €i+l = k 2 ' t h e n e i = °' ±9 " ' ' k ; 

If e., 0 = kr" , e., 0 = kr" , • • • , €._ = k2, e. = k, then e. . = 0 . i+r-2 i+r-3 i+l l i=l 

The number of conditions increases, of course, as r increases. For r = 2, the 
Fibonacci case needs 3 constraints; for r = 3, 5 constraints; for r = 4, 7 constraints; 

th for r = 5, 9 constraints, and for the r case, 2r - 1 constraints are needed and r 
identities must be used in the inductive proof. 

4. THE ZECKENDORF THEOREM FOR SIMULTANEOUS REPRESENTATIONS 
Klarner has proved the following theorem in [3]: 
KlarnerTs Theorem. Given non-negative integers A and B, there exists a unique 

set of integers {kt, k2, k3, • • • , kr} such that 

A = F. + F. + • • • + Fk , kj k2
 K r 

B = F. _,_-+ F. , - + • • • + Fi, ... , kj+1 k2+l Kr+1 

for |k. - k . | > 2, i ^ j , where each F. is an element of the sequence {Fn} , the 
double-ended Fibonacci sequence, F0 = 0, Fj_ = 1, F n + 2 = F n + i + F n . 

This is a new Zeckendorf theorem for simultaneous representation. Actually, integers 
A and B are so representable if and only if 

aB + A > 0, 1 < a < 2, a2 = a + 1, a = (1 + <s/"5)/2 , 

with equality if and only if A = B = 0, the vacuous representation of (0,0) using no rep -
resenting Fibonacci numbers. 

From the fact that aB + A > 0 is a condition for representability, it follows that every 
integer can be either an A or a B and can have a proper representation. For instance, 

-100 = F. + F. + • • • + F, k l k2 kr 
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for some {kt, k2, • • • , k r } , |k. - k. | > 2, i ^ j . The line x = -100 cuts the line ax + y = 
0, say, in (-100, y0) . Then let yt > y0 be an integer, and -100a + yt > 0, and so -100 
has a representation, and indeed has an infinite number of such representations as all inte-
gers y. > y- give r ise to admissible representations. 

Now, given positive integers A and B, B > A, how does one find the simultaneous 
representation of Klarner fs Theorem? To begin, write the Zeckendorf minimal representa-
tion for A + B, 

A + B = F + F + • • • + F r " ] % ' * m2 " m -

where |m. - m. | > 2, i ^ j , mt > m2 > m3 > • • • > m . Then B = F m _-, + R R and 
A = F m 2 + ^ A • T n e n e x t Fibonacci numbers in the representations of B and A are 
F m -1 a n d F m -2 i f R-R — RA ~ ° ' n o t k ° t n R"R anc* RA = °* W n e n m 2 i s °dd and 
•̂ "R < **A o r **A < °' t n e n t^ie n e x t F i D O n a c c i numbers in the representations of B and A 
are F _ m i and F _ m 2« The process continues, so that the sums of successive te rms in 
the representations of A and of B give the successive te rms in A + B, except that the last 
t e rms may have a zero sum, and the subscripts in the representations of A and B may not 
be ordered. 

We give a constructive proof of Klarner* s Theorem using mathematical induction. F i r s t , 
A = 0 and B = 1 is given uniquely by A = F0 and B = Ft, while A = 1 and B = 0 is 
given uniquely by A = F_1 and B = F0. Here, of course, we seek minimal representations 
in the form 

A = F k j + F k 2 + . . . + F k r , 

B = F, _ + F. . . + • • • + F t + 1 , kj+1 k2+l Kr
+1 

for F. £ { F } with |k. - k . | > 2, i ^ j (the conditions for the original Zeckendorf 
Theorem), and, of course, we assume that 

kj < k2 < k3 < ••• < k r . 

If we make the inductive assumption that all integers A > 0, B > 0, 0 £ A + B < n can be 
so represented, then we must secure compatible pairs A + 1,B and A, B + 1 each in ad-
missible form from those of the pair A ,B . We do this as follows. Let 

A + 1 ?. + ••• + F k + F , kt
 K r - 1 

B = V + '" + V1 + F ° : 

then we must put A + 1 and B into admissible form. We will show how to put these into 
admissible form in general by putting 

F. + F. + • • • + Fi, + F kt k2
 k

r m 

into admissible form. Now, if F is detached, there i s no problem. If F and Fu-. a re 
m v m Kj 

adjacent, then simply use the formula F - = F + F _.. to work upward in the subscripts 
until the s t r e s s is relieved. Since we have only a finite number r , there is no problem. 
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Now, if F m = F k j , then 2 F m = F m + F ^ + F m _ 2 = F m + 1 + F ^ . This may cause 
2Fw i and also the condition F , 0 + F _ . If the la t ter , use F , ., = F + F ., to move m-z m+2 m+1 v+1 v v-1 
upward in the subscripts to relieve the s t r e s s . We notice now that the 2F 0 has a smal ler 

m—A 
subscript than before. Repeat the process . This ultimately terminates or forms two con-
secutive Fibonacci numbers , where we can use F = F + F to relieve the s t r e s s , 
and we are done. 

Notice that this same procedure on B leaves the relation between A + 1 and B intact. 
You can also consider F = F _, or F = 0 , etc. m -1 m 

Next, form the sequence G0 = A, Gt = B, G + 2 = G - + G , and assume that A 
(and hence B) has two distinct admissible forms. Then let n become so large that all Fib-
onacci subscripts are positive, and we will violate the original Zeckendorf Theorem, for G 
would have two distinct representations. Then, A and B must have unique representations 
in tile admissible form. 

But, all of this is extendable. The double-ended Lucas sequence, ( L / ^ L0 = 2* 
L t - 1, L ? = L .. + L , also enjoys the representation property of A and B, for 
aB + A ^. 0, except that, additionally, A and B are chosen such that 5 |(A2 + B2, A2 + 2AB), 
so that not every integer pair qualifies. 

We can generalize Klarner fs Theorem to apply to the sequences formed when the F i b -
onacci polynomials are evaluated at x = k as follows. 

Theorem 4.1 . Given non-negative integers A and B, there exists a unique set of in-
tegers , {els e2, £3, • • • , e r , j } such that 

A = e i U . + 1 + e 2 U . + 2 + - - . + e r U . + r > 

B = e i U . + 2 + e 2 U . + 3 + . . - + e r U j + r + 1 , 

where each U. is an element of the sequence (U / , the double-ended sequence formed 
from the Fibonacci polynomials, F0(x) = 0, Ft(x) = 1, Fn + 2(x) = xFn + 1(x) + Fn(x), when 
x = k, so that U = F (k), and the e. satisfy the constraints e. = 0, 1, 2, • • • , k, and 
if e. = k, then e. n = 0, -«> < i < +°°. 

1 l - l 

Proof. When k = 1, we have Klarner fs Theorem. We take k > 2. F i r s t , we can 
represent uniquely A = 0 = U0 and B = 1 = V1 or A = 1 = U_1 and B = 0 = U0. If we 
make the inductive assumption that all integers A > 0, B > 0, 0 < A + B ^ n can be so 
represented, then we must secure compatible pai rs A + 1, B and A, B + 1 each in admis-
sible form from the ppir A ,B . Let 

A + l = e i U j + 1 + £ 2 U . + 2 + - - . + e r XJ . + r + U _ 1 ( 

B = €1U.+ 2 + e 2 U. + 3 + . . . + £ r U j + r + ; L + U 0 . 

We show how to put these into admissible form by working with 

1 3+1 L j+2 r j+r m 
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Case 1. U is away from any other U. . or no e. = k. We are done; there is no 
interference unless we create e. + 1 = k, in which case we may have to use U. , - = kU. + 

i 3+1 3 

V-
Case 2. e. = k and U = U. . . -; then replace kU. + U. _, by U. , - and work the I m j+i-1 ' F J 3-1 ^ 3+1 

subscripts upward to relieve the s t r e s s . Notice that this process always terminates , thus 
minimizing the number of t e rms . Suppose that U = U.+. with e. = k ; then 

(k + 1)U . = (U.^ .^ - U.^. J + k l T . , + Ur 0 3+1 3+1+1 3+1-l 3+1-l 3+i-2 

j+i+1 3+1-1 3+1-2 

e. ,n ^ k (since e. = k), so, if e . l 0 = k, then kU, + U, n = U . f 1 can be used and 
the subscripts can be worked upwards to relieve the s t r e s s . If the coefficient of U.+. „ is 
now (k + 1), we note that we can repeat the process and ultimately work it out downward 
while using kU, + U. - = U, - to relieve the s t r e s s upward. In any case , this algorithm 
will reduce A + 1 to an admissible form. Thus, we can represent Af and B! for 0 ^ A' 
+ BT < n + 1, finishing a proof that pairs of integers are so representable. 

Next, to show uniqueness, form the sequence V0 = A, Vj = B, V ? = kV - + V , 
and assume that A, and hence B, has two distinct admissible forms. Then, V has two 
distinct representations from those of, say A. Then, if n is large enough, V must have 
terms €.U. which all have positive subscripts , and V has two distinct representations, 
which violates the generalized Zeckendorf Theorem for the Fibonacci polynomials evaluated 
at x = k given in [1] , which guarantees a unique representation. 

The condition for representability for the Fibonacci polynomials evaluated at x = k is 

B(k + Vk2 + 4 ) / 2 + A > 0 

with equality only if A = B = 0 is vacuously represented. 

Now, if we use the Tribonacci numbers , 1, 1, 2, • • • , T „ = T + 2
+ T +l + T ' t h e n 

we can represent any three non-negative integers A, B, and C as in Klarner ! s Theorem. 
For the Tribonacci numbers , 

CX2 + B(X + 1) + A > 0, 1 < X < 2, A3 = X2 + A + 1 , 

is the condition for the ordered triple A, B, C to be a lattice point in the representation 
half-space, and 

xA2 + y(A + 1) + z = 0 

is the separator plane containing ( 0 , 0 , 0 ) to be represented vacuously using no Tribonacci 
numbers. We now generalize KlarnerTs Theorem to Tribonacci numbers. 

Theorem 4.2. Given three non-negative integers A, B, and C, there exists a unique 
set of integers {k1? k2, • • • , k r } such that 

A = T, + T. + • • • + Ti, , ki k2 % 



Ti = li T , 0 = T _,_„ + T _,_- + T . 
1 s n+3 n+2 n+1 n :_2> B = 0 = T , C = 0 = T0; and A 

?_1 + T0; and A = 0 = T , B = 0 = T0s 

= 0 = T_3 + T-2> 
C = 1 = Tx are 
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B = T k 1 + i + Vi+ • • • + T k r + i • 

where kt < k2 < k3 < • • • < k^ and no three k., k , k are consecutive integers , and 
where the T. are members of the sequence { T }+0°, the double-ended sequence of Tribon-

1 n — <%> 

acci numbers, T - = T0 = 0, 
Proof. F i rs t , A = 1 = 

B = 1 = T + T , C = 0 = 
given uniquely. We make the inductive assumption that all integers A ^ 0, B > 0, C > 0, 
0 < A + B + C I n can be represented uniquely in the form of the theorem. We must show 
that we can secure the compatible tr iples A + 1, B, C; A, B + l , C; and A, B, C + 1 in 
admissible form from the triple A, B, C to get the representations for (A + 1) + B + C < 
n + 1, A + (B + 1 ) + C < n + 1, A + B + ( C + l ) < n + l . To get A + 1, B, C, we add T 
to A, T 1 to B, and T0 to C, and then work upwards in the subscripts if necessary. 
To get A, B + l , C from A, B, and C, we add T „ + T ? to the representation for A, 
T + T to B, and T + T0 to C. To get A, B, C + 1 from the representations for 
A, B, and C, we add respectively T - , T0, Tj . Thus, given the representations for A, 
B, C, 0 1 A + B + C < n, we can always make the representation for one member of the 
triple to be increased by 1, so that we can represent all numbers whose sum is less than or 
equal to n + 1. 

Uniqueness follows from Theorem 3.3 with k = 1. 
Theorem 4.2 can be generalized to the general Tribonacci numbers obtained when the 

Tribonacci polynomials are evaluated at x = k. In that proof, one would obtain A + 1, B, 
C from A, B, C by adding T_2 , T , and T0 to A, B, and C, respectively; A, B + l , 
C by adding T 3 + kT 2 to A, T_2 + kT_x to B, and T_± + kT0 to C; and A, B, C + 1 
by adding T - , T0, TA to A, B, and C, respectively. Theorem 4.3 contains the general-
ization, as 

Theorem 4.3. Given three non-negative integers A, B, and C, there exists a unique 
set of integers {els e2, ' e' , e r , j } such that 

A = £ l U . + 1 + £ 2 U . + 2 + . . . + £ r U . + r > 

B = e i U . + 2 + £ 2 U . + 3 + . . . + £ r U j + r + 1 > 

C = c 1 U. + 3 + e 2 U . + 4 + --- + e r U . + r + 2 , 

where each U. is an element of the sequence ( u } ^ the double-ended sequence given by 
Un = Tn(k), T_x(x) = T0(x) = 0, TjCs) = 1, Tn + 3(x) =x2Tn + 2(x) + xTn + 1(x) + T n ( x ) , where 
the e. satisfy the constraints e. = 0, 1, 2, • • • , k2, and if e. = k2, then e._1 = 0, 1, 
• • • , k2 - 1, and if e. = k2 and e. - = k, then e. 0 = 0. l l - l s 1-2 

Finally, we can generalize Klarner ' s Theorem to apply to the sequences which ar i se 
when the generalized Fibonacci polynomials are evaluated at x = k. 

Theorem 4.4. Given r non-negative integers Nl9 N2, * " • , N , there exists a unique 
set of integers {kl9 k2, • •a , k s } such that 
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1 ki+i-1 k2+i-l k + i - l ' 
s 

where kA < k2 < k3 < • • • < k suid no r k., k. , • • • , k. a re consecutive integers, 
where the U. are members of the sequence {u } + , the double-ended sequence of r -nacci 
numbers, U = - 1 , 1 = U _ , U _,_0 = U = . . . = u = U0 = 0, U4 = 1, U _,_ = 

- r - r+1 -r+2 -r+3 - 1 u 1 n+r 
n+r-1 n+r-2 n+1 n 

Clearly, an inductive proof of Theorem 4.3, or of the theorem when generalized to the 
generalized Fibonacci polynomials evaluated at x = k, hinges upon being able to add one to 
one number represented and to again have all r numbers in admissible form. We examine 
the additions necessary for the inductive step for the generalized Fibonacci polynomials P (x) 
for some small values of r. The induction has been done for r = 2 and r = 3. For r = 4 , 
the Quadranacci polynomials evaluated at x = k, where admissible forms are known for A, 
B, C and D, the additions before adjustment of subscripts a re as follows: 

A + 1 = A + U_3 , 

B = B + U_2 , 

C = C + U" , 

D = D + UQ ; 

A = A + U_4 + kU_3 , 

B + 1 = B + U_3 + kU_2 , 

C = C + U_2 + kU_x , 

D = D + U ^ + kUQ ; 

A = A + U K + kU , + k2U Q , - o - 4 -3 

B = B + U_4 + kU_3 + k2U_2 , 

C + 1 = C + U 3 + kU_2 + k2U_1 , 

D = D + U + kU_x + k2UQ ; 

A = A + U_2 , 

B = B + U_x , 

C = C + UQ , 

D + 1 = D + Uj . 
Note that the Quadranacci polynomials extend to negative subscripts as Ut = 1, UQ = U - = 
U_2 = 0, U = 1, U_4 = -k, U g = U 6 = 0, • • • when evaluated at x = k. 

For r = 5, the Pentanacci polynomials evaluated at x = k a re Vt = 1, U0 = U - = 

U_2 = U - 3 = ° ' U - 4 = lj U - 5 = _ k ' U - 6 = U - 7 = ° ' U - 8 = ° U S i n g t n e r e l a t i o n U
n
 = 
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-kU - - k 2 U n + 2 - k 3 u
n + 3 " ^ ^ n + 4 + Un+5 to m o v e to values for the negative subscripts. The 

inductive one step pieces for the Pentanacci case , where representations for A, B, C, D and 
E are given, a re 

A + 1 = A + U . A = A + U c + k U / 1 
- 4 - o - 4 

B = B + U_3 B + 1 = B + U_4 + kU_3 

C = C + U_2 C = C + U + kU_2 

D = D + U 1 D = D + U_2 + kU 

E = E + U Q E = E + U_x + kUQ 

A = A + U a + kU - + k2U , , - 6 - 5 -4 
B = B + U _ + kU , + k2U Q , - o - 4 -6 

C + 1 = C + U__4 + kU_3 + k2U__2 , 

D = D + U 3 + k U 2 + k 2 U 1 } 

E = E + U + kU + k2UQ ; 

A = A + U _ + kU a + k2U _ + k3U A , - ( -b - o - 4 

B = B + U_6 + kU_5 + k2U_4 + k3U_3 , 

C = C + U + kU_4 + k2U_3 + k3U_2 , 

D + 1 = D + U 4 + kU_3 + k2U_2 + k3U_x , 

E = E + U_3 + kU 2 + k2U^x + k3UQ ; 

A = A + U 

-2 

J - 3 ' 
B = B + U 

c = c + u__1, 
D = D + UQ , 

E + 1 = E + U 1 . 

Thus the pattern from the first cases is c lear . The recurrence relation backward for 

U for general r is n & 

U = -kU J.n - k2U ^ - k3U ^0 - • •. - k r _ 1 U j_ n + U ^ , n n+1 n+2 n+3 n+r-1 n+r ' 

which leads to the lemma for general r and k > 2; 
Lemma. U / 0 oX = . . . = U , ,-v = 0 (r - 2 zeroes) , U = -k, -(2r-2) -(r+1) - r 

U__r+1 = 1, U - ( r _ 2 ) = . . . = UQ = 0 (r - 1 zeroes) , 1 ^ = 1 . 
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Using the lemma and the pattern made clear by the ear l ie r c a s e s , one could prove the final 
generalized theorem given below. 

Theorem 4.5. Let 

P - ( r - 2 ) ( x ) = P - ( r - 3 ) ( x ) = """ = P - l W = P 0 ( x ) = °» P * ( x ) = l j P 2 ( x ) = x r ~ 1 ' 
and 

P _, (x) = xr"1-p ,_ Ax) + x r " 2 P _, 0(x) + . . . + P (x) , n+r n+r - l v n+r-2v nv ' ' 
and let = p ( k ) 

n n 

Then, given r non-negative integers Nl9 N2, • • * , N , there exists a unique set of integers 
{ei9 e2, • • • , e s , j } such that 

N. = e-U. , .^- + e 0 U . , . , 0 + • - • + e U . , . , l 1 j+i+1 2 j+i+2 s j+i+s 

for i = 1, 2, • • • , r , where 

». - w~ 
r - 1 and e. satisfies the constraints e. = 0, 1, 2, • • • , k , -°° < i < +°°; where if e., n = - I i 9 i+r-2 

k r ±
> then e i + r _ 3 = 0, 1, . . . , k r~2; if e.+r__2 = k 1 " 1 and €. + r _ 3 = k r Z , . . • , and 

€.,-.= k2, e. = k, then e. ., = 0., l+l ' I l - l 

5. CONDITIONS FOR REPRESENTABILITY 

In Section 4, a necessary and sufficient condition for representability of an integer pair 
A, B by Klarner ' s Theorem was given as 

aiB + A > 0, a = (1 + \T5)/2 , 

where a is the positive root of X2 - A - 1 = 0. Here a proof i s provided, as well as s ta te-
ment and proof in the general case. 

F i r s t , the Fibonacci polynomials have the recursion relation 

F ,0(x) = xF ^n(x) + F (x) n+2 n+1 n 

and hence the associated polynomial 
X2 - xX - 1 = 0 

with roots Xt and X2, Xt > X2, Xt = ( x + ^ x 2 + 4 ) / 2 . If FA(x) is written as a l inear com-
bination of the roots , Fi(x) = At\t + A2X2, then F (x) = At\f + A2xf. We consider the l im-
iting ratio of successive Fibonacci polynomials, which becomes 

Fn + 1(x) A,A? + 1 + A,A? + 1
 + ^^~7-

n ^ o o - r i r = nM5>* A n + A ,n = ^ = 2 
n AtXi + A2X2 
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upon dividing through by XJj1, since |X2 /X^ < 1 . 
Now let H0 = A and E1 = B, l inear combinations of elements of the sequence of Fib-

onacci polynomials evaluated at x = k as defined in Theorem 4 .1 , and let H = kH ., + 
n n -1 

H „ be the recursion relation for (H ) . Then, as the special case of identity (4.6) proved 
in [2] where r = 2, 

Hn+1 = H lW k ) + H 0 F n ( k ) 

H ^ l H l F n ^ l ( k )
 + H 

F l k T F (k) + H0 ' 
nv nN ' 

For sufficiently large n, we have H + 1 / F (k) > 0. Thus, taking the limit of the expres -
sion above as n tends to infinity, 

(5.1) 0 < XiHt + H0 = B(k + ^k2 + 4 ) /2 + A , 

the condition for representability of an integer pair A9 B by Theorem 4 .1 , with equality 
only if A = B = 0 is vacuously represented. The conditions for Klarner ' s Theorem follow 
when k = 1. 

In the Tribonacci case , we let H0 = A, HA = B, H2 = C, l inear combinations of the 
elements of the sequence of Tribonacci polynomials evaluated at x = k as defined in Theo-
rem 4.3 , and let H = k2H - + kH n + H 0 be the recursion relation for the sequence 

n n -1 n-2 n-3 
{H } , the same recursion as for the Tribonacci polynomials evaluated at x = k, the s e -
quence ( T ( k ) } . Both {T(k)} and { H j have, then, the associated polynomial 

X3 - k2X2 - kX - 1 = 0 

with roots \ u X2, A3, where Xt > |x 2 | > |x3 | , k2 < \ t < k3 for k > 2, and 1 < \ t < 2 
for k = 1; and Xt is the root greatest in absolute value. Analogous to the Fibonacci case , 
we can prove that 

T ^ (k) ,. n+m . m 
n 

Again applying the identity (4.6) from [2] , where r = 3, we write 

H _,_„ = H0T ^,(k) + H- [kT (k) + T , (k)1 + HnT (k) . n+2 2 n+lv 1L nv n - l v J 0 nv 

Upon division by T ..(k), for n sufficiently large, H 0 / T ^(k) > 0, Then we evaluate 
n— JL H'rZi n— 1. 

the limit as n approaches infinity to obtain 
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(5.2) 0 < A[H2 + H jkAi + 1] + B0Xt = A?C + B[kAt + l ] + XtA , 

with equality only if A = B = C = 0 , the vacuous representation. Thus, we have the con-
ditions for representability of an integer triple A, B, C in te rms of Tribonacci polynomials 
evaluated at x = k as in Theorem 4.3. The conditions for Theorem 4.2 for representation 
using Tribonacci numbers follow when k = 1. 

Now, for representability in the general case , we consider a sequence { H } having 
the same recursion as the generalized Fibonacci polynomials { P (k)} , 

H ^ = k r " 1 H _, n + kr""2H ^ 0 + • • • + H , n+r n+r-1 n+r-2 n 

and take as its initial values H0 = Nl9 Hj = N2, • • • , H - = N , the r integers r e p r e -
sented in Theorem 4.5. Now, the generalized Fibonacci polynomials evaluated at x = k 
have the associated polynomial 

(5.3) Xr = (kA)27"1 + (kA)r~2 + ••• + kA + 1 

I I I I I I r—1 r—1 

A 2 |> |A3| > ••• > |AJ, where k < \ t < k + l /k , k > 2, and where 
Xt is the root of greatest modulus. (If k = 1, then 1 < \ t < 2.) 

We next prove that there is a root of greatest modulus for (5.3), that the roots are d i s -
tinct, and that the root of greatest modulus is positive and lies in the interval described. 

Lemma 1. Let 

f(A) = Ar - (kA)r _ 1 - (kA)r~2 kA - 1 . 

Then, for r > 2 and k > 2, f (k r _ 1 ) < 0 and f (k r _ 1 + l /k) > 0. 
Proof. Let A* = kA, so that 

Then, 

h(A*) = krf(A) = A*r - k^A* 2 ^ 1 + A*1""2 + ••• + 1) 

h(k r ) = k r 2 - k V ? 2 - r + k r 2 - 2 r
 + . . . + 1 ) 

= k r 2 - k r 2 - k r 2 " r - . . . - k r < o , 

r - 1 and this implies that f(k ) < 0„ 
Now, let \ t > l / k be a zero of g(A), where 

g(A) = (Ak - l)f(A) = (Ak - 1) I A / \ r (kA)r - 1 \ 

by summing the geometric ser ies formed by all but the f irst term of f(A). Then, 
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-g(^i) = ^f(k r + l - k A 1 ) - l = 0 

so that 

Thus 

Xf(kr + 1 - kAt) = 1 

k r + 1 - kX1 > 0 , 

x / , r-1 , 1 
h < k + E . 

We note that k r _ 1 < A* < k1""1 + l / k for k > 2S r > 2, agrees with 1 < \ t < 2 for 
the case k = 1, r > 2. 

Lemma 2. Take f(A) as defined in Lemma 1, and let 

g(A) = (Ak - l)f(A) = Ar+1k - Ar - Arkr + 1 . 

Then, g(A) and g'(A) have no common zeros . 
Proof. Since 

gf(A) = A r _ 1 [Ak(r + 1) - r ( l + k r ) ] , 

A = 0 is an (r - l)-fold zero of g!(A), and the other root is 

A = HFH (1 + kr) • 

We observe that A = 0 is not a zero of g(A), and 

Ag?(A) = rg(A) + Ar + 1k - r 

Let A0 be a common root of gf (A) = 0 and g(A) = 0 so that 

. r + 1 . A . r+1 r 
AQ k - r = 0, or \$ = ^ 

r+1 We note in passing that if kAo = r and g(A0) = 0, then 

g(Ao) = ^o r + l k " >or(l + k r ) + 1 = 0 

so that 

g(Ao) = r - Ajf(l + k r ) + 1 = 0, or A0
r = ~ + X 

l + k r 
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We now solve for X0 : 

x „ r + 1 -A Q 

Ao 

(Ao)(r 

1 + 

_ r ( l 

+ 1) 

k r 

+ k r ) 
~TJF" (a) 

r+1 We now show that kX0 = r is inconsistent with (a), by demonstrating that 

\ r + 1 

/ r ( k r + 1 ) \ . 
I (r + l)k J 

For k > 2, r > 3, k r " V r > 4 and 

v k r + l 
< 4 

so that 

while 

The fact that 

r+1 
4 > I ± _ ^ . | > e ( - ) 

is equivalent to the stated inequality. Thus we conclude that there a re no common zeros be-
tween the functions g(A) and gf(A)? for if there would be at least one repeated root AQ, then 

r+1 the two expressions for AQ would be equal, which has been shown to be impossible. 
Comments. For all integers r > 2 and k > 1, the 
Theorem. The roots of 

Ar = A r - 1 + Ar"2 + • • • + A + 1 

a re distinct. The root Al9 of greatest modulus, l ies in the interval 1 < \ t < 2, and the 
remaining r - 1 roots A2, A^ • • • , A satisfy |A. | < 1 for j = 2 , 3, • • • , r . 
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was proved by E. P. Miles, J r . , in [4] . The case k ^ 2 and r = 2 is very easy to prove, 
involving only a quadratic. The general case for k > 2 and r > 3 now follows. 

Theorem 5.1. For r > 3, k > 2, the roots A1? A2, • • . , A of the polynomial 

f(A) = Ar - (kA)r _ 1 - (kA)r_2 - . . . - k A - 1 

are distinct, and Xl9 the root of greatest modulus, satisfies 

k1'1 < At < k1-1 + | . 

Proof. Let 

g(A) = (Ak - l)f(A) = Ar + 1k - Ar - A r k r + 1 . 

Clearly, g(A) has the same zeros as f(A) except that g(A) = 0 also when A = l /k . By 
Lemma 2, the polynomial g(A) has no repeated zeros and thus for k > 2, r ^. 3, the poly-
nomial f(A) has no repeated zeros . 

We now show that the root Xt of Lemma 1, 

k < Ai < k + £ , 

is the zero of greatest modulus for the polynomial f(A). We make use of the theorem appear-

ing in Marden [5]: 
Theorem (32, 1) (Montel): At least p zeros of the polynomial 

f(z) = a0 + ajz + a2z2 + • • • + a z 

lie in the circular disk 

1 
,n-

JJ z < 1 + max 
a . , n " P + 1 

j = 0, 1, 2, • • • , p 

As applied to our f(A), 

f(A) = Ar - (kA)1""1 - (kA)r"2 - • • - - kA - 1 , 

a = 1 and a. = k\ j = 0, 1, • • • , r - 1. Thus (r - 1) of the zeros of f(A) lie inside the 

disk 
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|X| < l + k ( r " 1 ) / 2 . 

To show that Xt
 > |X|, we simply compare the two. From Lemma 1, 

k37"1 < Xt < k1""1 + i / k , 

| x | < i + k ( r - 1 ) / 2 . 

The quadratic x2 - x - 1 > 0 if x >• (1 + N/"5)/2; thus, k ^ " 1 ^ 2 = x > (1 + N/*5)/2 if k > 
2 and r > 3. Therefore, the (r - 1) zeros of f(X) distinct from X1 have modulus less 
than that of Xt. We conclude that f (X) does indeed have a positive root and this root is the 
one of greatest modulus. 

Corollary 5.1.1. For all real numbers k > 2 and all positive integers r > 2, the 
polynomial f(A) of Theorem 5.1 has distinct zeroes and Xlf the zero of greatest modulus, 

r—1 r—i 
i s positive and satisfies k"" < Xj < k ~~ + l /k . 

Corollary 5.1.2. The only positive root Xt of the polynomial f(X) of Theorem 5.1 l ies 
in the interval 

k r - l + 1 _ _ J _ < x < k r - l + 1 . 
k , r 2 - r + l k 

k 

Proof. We have only to show that 

h > k
r - l + 1 _ _ 2 _ = a . 

k , r^-r+l k 

Calculating f(a) from the following form, 

m v _ Ar (kX)r - 1 _ kX r + 1 - (kr + l)Xr + l 
i u ) - x - ^ _ 1 — kx - i 

it is not difficult to show that f(a) < 0. But f(X) > 0 whenever X > A*, and XA is the only 
positive root. Also, it is not difficult to show that a > 0. Therefore, we must have Xt > a. 

Corollary 5.1.2 still yields 1 < Xt < 2 for k = 1, r > 2. For k = 10 and r = 10, 
the root can vary only in an interval A = 1/1091; if k = 10 and r = 100, then A = l/lO9 9 0 1 

making an extremely accurate approximation for large values of r. 
The following improved proof of Theorem 5.1 was given by A. P. Hillman [7]. F i r s t , 

*m - * r fcX)r - 1 _ kX r + 1 - (kr + l)Xr + 1 _ kXr(X - k37"1) - (Xr - 1) 
fW - x - kx _ ± - - kx - i KxTT 

r 1 k r ( r - 1 } 1 
f (k r _ 1 ) = - ^ - — — — < 0 

k - 1 
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and 

f ( k r - l + ( l / k ) ) = klk17-1 + ( l / k ) ) r . (1/k) - [ ( k ^ 1 + ( l / k ) ) r - 1] = _L > o. 
k r k r 

r 1 It now follows from the Intermediate Value Theorem that f(X4) = 0 for some \ t with k 
r - 1 < XA

 < k + l /k . But Descartes1 Rule of Signs tells us that f(X) = 0 has only one positive 
r root. Hence, X4 is the only positive root. Since the coefficient of the highest power, X , 

is positive in f(X), we know that f(X) > 0 for X very large. But f(X) does not change 
sign for X > Xi . Hence f(X) > 0 for X > X^ 

Now let | x | = p with p > \ t . Then p r - (kp ) r _ 1 - (kp)r~2 - • • • - kp - 1 > 0, or p r 

> (kp)1""1 + (kp)r~2 + • • • + kp + 1, and 

| x r | = p r > (kp)1""1 + ••• + kp + 1 = IlkX)1"""1! + . . . + |kx| + 1 

> [(kX)1""1 + . - • + kA + l | . 

Hence, X1" t (kX)1""1 + (kX)1""2 + • • • + kX + 1 and so f(X) ^ 0 for X> \ t . 
Next let | x |= XA with X ^ X^ Since 

K | + h | + ••• + | z n | > | Z l + z2 + ••• + z n | 

if the z. are not all on the same ray from the origin, 

|x r | = Xf = (kXi)1""1 + . . . + kXi + 1 

= IlkX)1""1) + • • • + |kX | + 1 > IlkX)1""1 + • . . + kX + l | . 

Thus, for | x | = Xls X f Xu we have Xr ? (kX)37"*1 + - •« + kX + 1, or f(X) f 0. 
All that remains is to show that \x is not a multiple root of f(X) = 0 , i. e. , not a root 

of ff(X) = 0. Since f (Xi) = 0, we have 

(kr + l)xf = kxf+1 * 1 
Then 

(r + l)kxf - r (k r + D x f ' 1 (r + l)kxf+ 1 - r ( k r + l)xf 
f i ( A l ) = TxT^l = _ Xi(kXi - 1) 

(2rk + k + r)xf+ 1 

Xi(kXi - 1) 

Hence, f!(Xi) f- 0 and the proof is finished. 
Corollary. Theorem 5.1 holds for any k > 0. 
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Proof. Examine the Hillman proof of the theorem and see the fact that k > 2 was not 
explicitly used as in the ear l ie r proof. This extends Theorem 5.1 to include E. P . MilesT 

theorem. 
Theorem 5.1 states that the zeros of f(A) are distinct. Something of this kind is needed 

since if a root, say A2, is repeated (r - 1) t imes , then 

Qn = AAA? + x £ ( B 2 n r - 2 + B 3 n r _ 3 + . . . + B r ) 

and the existence of 
. n+1 /T. r -2 , -, r - 3 , , T> \ 
A2 (B2n + B3n + ••• + B r ) 

l i m »—• : 
n -*oo . n 

may be in doubt or at least it ra i ses some questions. 
Now, for the generalized Fibonacci polynomials { P (k)}, since we can write 

Pn(k) = AjA? + A2xf + • • • + A r X^ , 

a l inear combination of the roots of the associated polynomial (5.3), 

P + (k) A 4 x f m + A2X*+m + • • • + A X n + m 
n+m _ * l z L r r 
P ( k ) A ^ _L A ^ ^ . A ^ n 

nv AJXJ + A2A2 + . . . + A r A r 

Upon division by \ , since |X. A i | < 1, i = 2, 3, • •* , r , 

P n+m ( k ) . m l i m —-^ ;, i = Ai n -»oo P (k) x 

so that the ratio of a pair of successive generalized Fibonacci polynomials evaluated as x = k 
approaches the greatest positive root of its associated polynomial as n approaches infinity. 

Now, the following was proved as identity (4.6) in [2]: 

(5.4) Hatt_1 = H r _ l P n + 1 ( k ) + H r _ 2 [ k r - 2 P n ( k ) + k r - 3 P n _ l ( k ) 

+ H r - 3 [ k r " 3 p n ( k ) + k r " 4 p n - l ( k ) 

+ " - + P n - r + 3 ( k ) ] 

+ Hj[ xPn(k) + P ^ j W ] + H0Pn(k) 
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Upon division by P n _ r + 2 ^ 5 i f H n + r - l ^ P n - r + 2 ^ > ° f o r allsufficientiylarge values of n, 
(5.4) becomes 

0 < H ^ J - 1 + ET_2[<toi)T~2 + (kXi)3""3 + . . . + kXi + 1] 

+ A!H r - 3 [(kXt) r"3 + tAj)1"-4 + • - - + kXt + 1] 

+ A?Hr_4 [(kXi)1""4 + (kXi) r"5 + . . . + kXt + 1] 

+ • - . + xf"3Hi(kXi + 1) + xf""2H0 . 

Thus, the representability condition for Theorem 4.5, for the generalized Fibonacci poly-
nomials evaluated at x = k, becomes 

0 < N ^ " 1 + N ^ J l k A i ) 3 7 " 2 + (kXi)1*"3 + . . . + kXt + 1] 

+ A1Nr_2[(kA1) r" 3 + (kXi)r"4 + . . . + k ^ + 1] 

+ XiNr__3[(kXi)r""4 + (kXi)1""5 + •-- + kXi + 1] 

+ • • - + xf~3N2(kX1 + 1) + xf" 2 N t , 

where X* is the positive root of greatest absolute value of the associated polynomial (5.3), 
with equality only if Nj = N2 = • • • = N = 0 , the vacuous representation. 

When k = 1, we have the representation conditions for r integers N1? N2, • ' ' , N 
in t e rms of the r-bonacci numbers as in Theorem 4.4. 
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