IRREDUCIBILITY OF LUCAS AND GENERALIZED LUCAS POLYNOMIALS

GERALD E. BERGUM
South Dakota State University, Brookings, South Dakota 57006
VERNER E. HOGGATT, JR.
San Jose State University, San Jose, California 95192

1. INTRODUCTION

In [5], Webb and Parberry discuss several divisibility properties for the sequence $\left\{\mathrm{F}_{\mathrm{n}}(\mathrm{x})\right\}$ of Fibonacci polynomials defined recursively by

$$
\begin{equation*}
\mathrm{F}_{0}(\mathrm{x})=0, \quad \mathrm{~F}_{1}(\mathrm{x})=1, \quad \mathrm{~F}_{\mathrm{n}+2}(\mathrm{x})=\mathrm{xF}_{\mathrm{n}+1}(\mathrm{x})+\mathrm{F}_{\mathrm{n}}(\mathrm{x}), \quad \mathrm{n} \geq 0 \tag{1}
\end{equation*}
$$

In particular, Webb and Parberry prove that $F_{p}(x)$ is irreducible over the integral domain of the integers if and only if p is a prime.

In [1], Bergum and Kranzler develop many relationships which exist between the sequence $\left\{\mathrm{F}_{\mathrm{n}}(\mathrm{x})\right\}$ of Fibonacci polynomials and the sequence $\left\{\mathrm{L}_{\mathrm{n}}(\mathrm{x})\right\}$ of Lucas polynomials defined recursively by

$$
\begin{equation*}
L_{0}(x)=2, \quad L_{1}(x)=x, \quad L_{n+2}(x)=x L_{n+1}(x)+L_{n}(x), \quad n \geq 0 \tag{2}
\end{equation*}
$$

Specifically, Bergum and Kranzler show that

$$
\begin{equation*}
\mathrm{L}_{\mathrm{n}}(\mathrm{x}) \mid \mathrm{L}_{\mathrm{m}}(\mathrm{x}) \quad \text { iff } \quad \mathrm{m}=(2 \mathrm{k}-1) \mathrm{n}, \quad \mathrm{k} \geq 1 \tag{3}
\end{equation*}
$$

With $\mathrm{n}=1$, we see that $\mathrm{x} \mid \mathrm{L}_{\mathrm{n}}(\mathrm{x})$ for all odd integers m so that the result of Webb and Parberry does not hold for the sequence $\left\{L_{n}(x)\right\}$.

In [4], Hoggatt and Long show that the result of Webb and Parberry does hold for the sequence $\left\{\mathrm{U}_{\mathrm{n}}(\mathrm{x}, \mathrm{y})\right\}$ of generalized Fibonacci polynomials defined by the recursion
(4) $\quad \mathrm{U}_{0}(\mathrm{x}, \mathrm{y})=0, \quad \mathrm{U}_{1}(\mathrm{x}, \mathrm{y})=1, \quad \mathrm{U}_{\mathrm{n}+2}(\mathrm{x}, \mathrm{y})=\mathrm{xU}_{\mathrm{n}+1}(\mathrm{x}, \mathrm{y})+\mathrm{yU}_{\mathrm{n}}(\mathrm{x}, \mathrm{y}), \quad \mathrm{n} \geq 0$.

The purpose of this paper is to obtain necessary and sufficient conditions for the irreducibility of the elements of the sequence $\left\{L_{n}(x)\right\}$ as well as the elements of the sequence $\left\{\mathrm{V}_{\mathrm{n}}(\mathrm{x}, \mathrm{y})\right\}$ of generalized Lucas polynomials defined by the recursion
(5) $\quad \mathrm{V}_{0}(\mathrm{x}, \mathrm{y})=2, \quad \mathrm{~V}_{1}(\mathrm{x}, \mathrm{y})=\mathrm{x}, \quad \mathrm{V}_{\mathrm{n}+2}(\mathrm{x}, \mathrm{y})=\mathrm{xV}_{\mathrm{n}+1}(\mathrm{x}, \mathrm{y})+\mathrm{y} \mathrm{V}_{\mathrm{n}}(\mathrm{x}, \mathrm{y}), \quad \mathrm{n} \geq 0$.

The first few terms of the sequence $\left\{\mathrm{V}_{\mathrm{n}}(\mathrm{x}, \mathrm{y})\right\}$ are

```
n
1
\(2 \quad x^{2}+2 y\)
\(3 \quad x^{3}+3 x y\)
\(4 \quad x^{4}+4 x^{2} y+2 y^{2}\)
\(5 \quad x^{5}+5 x^{3} y+5 x y^{2}\)
\(6 \quad x^{6}+6 x^{4} y+9 x^{2} y^{2}+2 y^{3}\)
\(7 \quad x^{7}+7 x^{5} y+14 x^{3} y^{2}+7 x y^{3}\)
\(8 \quad x^{8}+8 x^{6} y+20 x^{4} y^{2}+16 x^{2} y^{3}+2 y^{4}\)
\(9 \quad x^{9}+9 x^{7} y+27 x^{5} y^{2}+30 x^{3} y^{3}+9 x y^{4}\).
```

Observe that $\mathrm{L}_{\mathrm{n}}(\mathrm{x})=\mathrm{V}_{\mathrm{n}}(\mathrm{x}, 1)$ so that with $\mathrm{y}=1$, we also have the first nine terms of the sequence $\left\{\mathrm{L}_{\mathrm{n}}(\mathrm{x})\right\}$.

2. IRREDUCIBILITY OF $L_{n}(x)$

The basic fact that we shall use is found in [2, p. 77] and is
Theorem 2.1. (Eisenstein's irreducibility criterion.) For a given prime p, let

$$
F(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

be any polynomial with integral coefficients such that

$$
a_{n-1} \equiv a_{n-2} \equiv \cdots \equiv a_{0} \equiv 0(\bmod p), \quad a_{n} \not \equiv 0(\bmod p), \quad a_{0} \not \equiv 0\left(\bmod p^{2}\right)
$$

then $F(x)$ is irreducible over the field of rationals.
To establish our first irreducibility theorem, we use the following.
Lemma 2.1. Every coefficient of $\mathrm{L}_{2} \mathrm{n}(\mathrm{x})$, except for the leading coefficient, is divisible by 2 and 4 does not divide the constant term.

Proof. If $\mathrm{n}=1$ then $\mathrm{L}_{2}(\mathrm{x})=\mathrm{x}^{2}+2$ and the lemma is obviously true. Assume the lemma is true for n.

In [1], we find

$$
\begin{equation*}
L_{2 k}(\mathrm{x})=\mathrm{L}_{\mathrm{k}}^{2}(\mathrm{x})-2(-1)^{\mathrm{k}} \tag{6}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\mathrm{L}_{2^{\mathrm{n}+1}}(\mathrm{x})=\mathrm{L}_{2^{2}}(\mathrm{x})-2 . \tag{7}
\end{equation*}
$$

By the induction hypothesis, it is obvious that $L_{{ }_{2} n+1}(x)$ is monic and every coefficient of $L_{2^{n}+1}(x)$ is divisible by 2. Furthermore, since $L_{2}{ }_{2}(x)$ has constant term +2 we see that $\mathrm{L}_{2}^{2}{ }^{\mathrm{n}}(\mathrm{x})$ has constant term +4 , thus $\mathrm{L}_{2 \mathrm{n}+1}(\mathrm{x})$ has constant term +2 . Therefore, the constant term of $\mathrm{L}_{2 \mathrm{n}+1}(\mathrm{x})$ is divisible by 2 but not by 4 and the lemma is proved.

An immediate result of Lemma 2.1 with the aid of Theorem 2.1 is

Theorem 2.2. The Lucas polynomial $\mathrm{L}_{2} \mathrm{k}(\mathrm{x})$ is irreducible over the rationals for $\mathrm{k} \geq 1$. Although $L_{p}(x)$ is not irreducible if p is a prime, we can show that $L_{p}(x) / x$ is irreducible for every odd prime p.

First we note, as is pointed out in [1], that

$$
\begin{equation*}
\mathrm{L}_{\mathrm{n}}(\mathrm{x})=\alpha^{\mathrm{n}}+\beta^{\mathrm{n}} \tag{8}
\end{equation*}
$$

where $\alpha=\left(\mathrm{x}+\sqrt{\mathrm{x}^{2}+4}\right) / 2$ and $\beta=\left(\mathrm{x}-\sqrt{\mathrm{x}^{2}+4}\right) / 2$. Hence, if $\mathrm{n}=2 \mathrm{~m}+1$ we have

$$
\begin{align*}
L_{n}(x) & =\left(x+\sqrt{x^{2}+4}\right)^{n} / 2^{n}+\left(x-\sqrt{x^{2}+4}\right)^{n} / 2^{n} \\
& =2^{-n}\left(\sum_{k=0}^{n}\binom{n}{k} x^{n-k}\left(x^{2}+4\right)^{k / 2}+\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} x^{n-k}\left(x^{2}+4\right)^{k / 2}\right) \tag{9}
\end{align*}
$$

$$
=2^{-(\mathrm{n}-1)} \sum_{\mathrm{k}=0}^{\mathrm{m}}\binom{\mathrm{n}}{2 \mathrm{k}} \mathrm{x}^{\mathrm{n}-2 \mathrm{k}}\left(\mathrm{x}^{2}+4\right)^{\mathrm{k}}
$$

$$
=2^{-(n-1)} \sum_{k=0}^{m} \sum_{s=0}^{k}\binom{n}{2 k}\binom{k}{s} x^{n-2 s_{2} 2 s}
$$

Therefore,

$$
\begin{equation*}
L_{n}(x) / x=2^{-(n-1)} \sum_{k=0}^{m} \sum_{s=0}^{k}\binom{n}{2 k}\binom{k}{s} x^{n-2 s-1} 2^{2 s}, \quad n=2 m+1 \tag{10}
\end{equation*}
$$

For each $s, 0 \leq s \leq m$, we see that the coefficient of $x^{n-2 s-1}$ is

$$
\begin{equation*}
2^{-(n-2 s-1)} \sum_{k=s}^{m}\binom{n}{2 k}\binom{k}{s}, \quad n=2 m+1 \tag{11}
\end{equation*}
$$

When $s=0$, we have the leading coefficient of $L_{n}(x)$ which is 1 so that

$$
\begin{equation*}
2^{-(n-1)} \sum_{k=0}^{m}\binom{n}{2 k}\binom{k}{0}=1, \quad n=2 m+1 \tag{12}
\end{equation*}
$$

When $s=m$ in (11), we have the constant term of $L_{n}(x)$ which is n. If we nowlet n be an odd prime p and recall that p divides

$$
\binom{\mathrm{p}}{2 \mathrm{k}}
$$

if p is a prime, then p is a factor of (11) for each value of s,

$$
1 \leq \mathrm{s} \leq \frac{(\mathrm{p}-3)}{2}
$$

Hence, by Eisenstein's criterion, the following is true.
Theorem 2.3. The polynomials $L_{p}(x) / x$ are irreducible over the rationals if p is an odd prime.

By (11) and the fact that the coefficients of $L_{n}(x)$ are integers, we have
Corollary 2.1. If $\mathrm{n}=2 \mathrm{~m}+1$ then $2^{\mathrm{n}-2 \mathrm{~s}-1} \mathrm{n}$ divides

$$
\sum_{\mathrm{k}=\mathrm{s}}^{\mathrm{m}}\binom{\mathrm{n}}{2 \mathrm{k}}\binom{\mathrm{k}}{\mathrm{~s}}
$$

for any s such that $0 \leq s \leq m$.
Using (3) together with Theorems 2.2 and 2.3, we have
Theorem 2.4. (a) The Lucas polynomials $L_{n}(x), n \geq 1$, are irredicuble over the rationals if and only if $n=2^{\mathrm{k}}$ for some integer $\mathrm{k} \geq 1$.
(b) The polynomials $\mathrm{L}_{\mathrm{n}}(\mathrm{x}) / \mathrm{x}, \mathrm{n}$ odd, are irreducible over the rationals if and only if n is a prime.

$$
\text { 3. IRREDUCIBILITY OF } V_{n}(x, y)
$$

It is a well known fact that
(13)

$$
\mathrm{U}_{\mathrm{n}}(\mathrm{x}, \mathrm{y})=\frac{\alpha^{\mathrm{n}}-\beta^{\mathrm{n}}}{\alpha-\beta}, \quad \mathrm{n} \geq 0
$$

and
(14) $\quad \mathrm{V}_{\mathrm{n}}(\mathrm{x}, \mathrm{y})=\alpha^{\mathrm{n}}+\beta^{\mathrm{n}}, \quad \mathrm{n} \geq 0$,
where $\alpha=\left(x+\sqrt{x^{2}+4 y}\right) / 2$ and $\beta=\left(x-\sqrt{x^{2}+4 y}\right) / 2$.
In [4], we find
Lemma 3.1. (a) For $n \geq 0$,

$$
\mathrm{U}_{\mathrm{n}}(\mathrm{x}, \mathrm{y})=\sum_{\mathrm{k}=0}^{[(\mathrm{n}-1) / 2]}\binom{\mathrm{n}-\mathrm{k}-1}{\mathrm{k}} \mathrm{x}^{\mathrm{n}-2 \mathrm{k}-1 \mathrm{y}^{\mathrm{k}}}
$$

(b) For $\mathrm{n} \geq 0$, $\mathrm{m} \geq 0$,

$$
\left(\mathrm{U}_{\mathrm{m}}(\mathrm{x}, \mathrm{y}), \quad \mathrm{U}_{\mathrm{n}}(\mathrm{x}, \mathrm{y})\right)=\mathrm{U}_{(\mathrm{m}, \mathrm{n})}(\mathrm{x}, \mathrm{y})
$$

Using (13) and (14), a straightforward argument yields

Lemma 3.2. (a) $\mathrm{V}_{\mathrm{n}}(\mathrm{x}, \mathrm{y})=\mathrm{yU}_{\mathrm{n}-1}(\mathrm{x}, \mathrm{y})+\mathrm{U}_{\mathrm{n}+1}(\mathrm{x}, \mathrm{y}), \quad \mathrm{n} \geq 1$;
(b) $\quad \mathrm{U}_{2 \mathrm{n}}(\mathrm{x}, \mathrm{y})=\mathrm{U}_{\mathrm{n}}(\mathrm{x}, \mathrm{y}) \mathrm{V}_{\mathrm{n}}(\mathrm{x}, \mathrm{y}), \quad \mathrm{n} \geq 0$;
(c) $\mathrm{U}_{2 \mathrm{n}}(\mathrm{x}, \mathrm{y}) \mathrm{V}_{(2 \mathrm{k}+1) \mathrm{n}+1}(\mathrm{x}, \mathrm{y})+\mathrm{y}^{2 \mathrm{n}} \mathrm{V}_{(2 \mathrm{k}-1) \mathrm{n}}(\mathrm{x}, \mathrm{y})$

$$
=\mathrm{V}_{(2 \mathrm{k}+1) \mathrm{n}}(\mathrm{x}, \mathrm{y}) \mathrm{U}_{2 \mathrm{n}+1}(\mathrm{x}, \mathrm{y})
$$

Using (a) of Lemma 3.1 and 3.2, we have, for $n \geq 1$, that

$$
\begin{aligned}
V_{n}(x, y) & =\sum_{k=0}^{[(n-2) / 2]}\binom{n-k-2}{k} x^{n-2 k-2} y^{k+1}+\sum_{k=0}^{[n / 2]}\binom{n-k}{k} x^{n-2 k} y^{k} \\
& =\sum_{k=1}^{[n / 2]}\binom{n-k-1}{k-1} x^{n-2 k y^{k}+\sum_{k=0}^{[n / 2]}\binom{n-k}{k} x^{n-2 k} y^{k}} \\
& =\sum_{k=1}^{[n / 2]}\binom{n-k-1}{k-1} \frac{n}{k} x^{n-2 k} y^{k}+x^{n} .
\end{aligned}
$$

Hence,
Lemma 3.3. (a) For $n \geq 1, V_{n}\left(x, y^{2}\right)$ is homogeneous of degree n.
(b) If n is odd then x is a factor of $V_{n}\left(x, y^{2}\right)$ and $V_{n}\left(x, y^{2}\right) / x$ is homogeneous of degree $n-1$.

By (b) of Lemma 3.1, $\left(\mathrm{U}_{2 \mathrm{n}}(\mathrm{x}, \mathrm{y}), \mathrm{U}_{2 \mathrm{n}+1}(\mathrm{x}, \mathrm{y})\right)=1$. Using this fact together with (b) of Lemma 3.2 and induction on k in (c) of Lemma 3.2, one obtains

Lemma 3.4. If $\mathrm{k} \geq 1$ then $\mathrm{V}_{\mathrm{n}}(\mathrm{x}, \mathrm{y}) \mid \mathrm{V}_{(2 \mathrm{k}-1) \mathrm{n}}(\mathrm{x}, \mathrm{y})$.
In [3, p. 376, Problem 5], we find
Lemma 3.5. A homogeneous polynomial $f(x, y)$ over a field F is irreducible over F if and only if the corresponding polynomial $f(x, 1)$ is irreducible over F.

Using Lemmas 3.3 and 3.5 with Theorem 2.4, we have
Theorem 3.1. (a) The polynomials $\mathrm{V}_{\mathrm{n}}\left(\mathrm{x}, \mathrm{y}^{2}\right)$ are irreducible over the rationals if and only if $n=2^{k}$ for some integer $k \geq 1$.
(b) The polynomials $\mathrm{V}_{\mathrm{n}}\left(\mathrm{x}, \mathrm{y}^{2}\right) / \mathrm{x}, \mathrm{n}$ odd are irreducible over the rationals if and only if n is an odd prime.

Since $f(x, y)$ is irreducible if $f\left(x, y^{2}\right)$ is irreducible and x is a factor of $V_{n}(x, y)$ for n odd by (15), we apply Lemma 3.4 and Theorem 3.1 to obtain

Theorem 3.2. (a) The polynomials $\mathrm{V}_{\mathrm{n}}(\mathrm{x}, \mathrm{y})$ are irreducible over the rationals if and only if $n=2^{k}$ for some integer k greater than or equal to one.
(b) The polynomials $\mathrm{V}_{\mathrm{n}}(\mathrm{x}, \mathrm{y}) / \mathrm{x}, \mathrm{n}$ odd, are irreducible over the rationals if and only if n is an odd prime.

Letting $\mathrm{y}=1$ and $\mathrm{n}=2 \mathrm{~m}+1$ in (15), we see that
(16)

$$
\mathrm{L}_{\mathrm{n}}(\mathrm{x}) / \mathrm{x}=\sum_{\mathrm{k}=1}^{\mathrm{m}}\binom{\mathrm{n}-\mathrm{k}-1}{\mathrm{k}-1} \frac{\mathrm{n}}{\mathrm{k}} \mathrm{x}^{\mathrm{n}-2 \mathrm{k}-1}+\mathrm{x}^{\mathrm{n}-1}
$$

Comparing the coefficients of $\mathrm{x}^{\mathrm{n}-2 \mathrm{~s}-1}$ in (16), $1 \leq \mathrm{s} \leq \mathrm{m}$, with the result obtained in (11), we have

Corollary 3.1. If $\mathrm{n}=2 \mathrm{~m}+1$ and $1 \leq \mathrm{s} \leq \mathrm{m}$ then

$$
2^{-(n-2 s-1)} \sum_{\mathrm{k}=\mathrm{s}}^{\mathrm{m}}\binom{\mathrm{n}}{2 \mathrm{k}}\binom{\mathrm{k}}{\mathrm{~s}}=\binom{\mathrm{n}-\mathrm{s}-1}{\mathrm{~s}-1} \frac{\mathrm{n}}{\mathrm{~s}}
$$

REFERENCES

1. G. Bergum and A. Kranzler, Linear Recurrences-Identities and Divisibility Properties, unpublished.
2. G. Birkhoff and S. MacLane, A Survey of Modern Algebra, The MacMillan Company, New York, N Y., 1965.
3. G. Birkoff and S. MacLane, Algebra, The MacMillan Company, New York, N. Y., 1967.
4. V. E. Hoggatt, Jr., and C. T. Long, "Divisibility Properties of Generalized Fibonacci Polynomials," Fibonacci Quarterly, to appear April, 1974.
5. W. A. Webb and E. A. Parberry, "Divisibility Properties of Fibonacci Polynomials," Fibonacci Quarterly, Vol. 7 (Dec. 1969), pp. 457-463.
