GENERALIZED HIDDEN HEXAGON SQUARES

A. K. GUPTA

The University of Michigan, Ann Arbor, Michigan 48104

The triangular array of binomial coefficients is well known. Recently, Hoggatt and Hansel [2] have obtained a very surprising result involving these numbers. Stanton and Cowan [3] and Gupta [1] have generalized this triangular array to a tableau. In this paper, we generalize the results due to Hoggatt and Hansel.

Let, for any positive integer m and any integer $n,\binom{m}{n}=0$ if either $n>m$ or $\mathrm{n}<0$. Then we prove the following theorem.

Theorem. The product of the six binomial coefficients spaced around $\binom{m}{n}$, viz.,

$$
\binom{m-r_{1}}{n-r_{2}}\binom{m-r_{1}}{n}\binom{m}{n-r_{2}}\binom{m+r_{2}}{n+r_{1}}\binom{m+r_{2}}{n}\binom{m}{n+r_{1}}
$$

where r_{1} and r_{2} are positive integers, is a perfect integer square.
Proof. The product of the six binomial coefficients is

$$
\begin{aligned}
& \frac{\left(m-r_{1}\right)!}{\left(n-r_{2}\right)!\left(m-r_{1}-n+r_{2}\right)!} \cdot \frac{\left(m-r_{1}\right)!}{(n)!\left(m-r_{1}-n\right)!} \cdot \frac{(m)!}{\left(m-r_{2}\right)!\left(m-n+r_{2}\right)!} \cdots \\
& =\left[\frac{\left(m-r_{1}\right)!(m)!\left(m+r_{2}\right)!}{\left(n-r_{2}\right)!\left(m-r_{1}-n+r_{2}\right)!(n)!\left(m-r_{1}-n\right)!\left(m-n+r_{2}\right)!\left(n+r_{1}\right)!}\right]^{2} .
\end{aligned}
$$

Now, the product of binomial coefficients is an integer, since each binomial coefficient is an integer. And the square of a rational number is an integer if and only if the rational number is an integer. Hence the product is an integer square.

It is interesting to note that

$$
\binom{m}{n-r_{2}}\binom{m-r_{1}}{n}\binom{m+r_{2}}{n+r_{1}}=\binom{m-r_{1}}{n-r_{2}}\binom{m+r_{2}}{n}\binom{m}{n+r_{1}}
$$

which is what really happens to make the product of six numbers a perfect square.
Corollary 1. If $r_{1}=r_{2}$, we get the product of six binomial coefficients which are equally spaced around $\binom{m}{n}$.

Corollary 2. If $r_{1}=r_{2}=1$, we get the product of six binomial coefficients that surround $\binom{m}{n}$. This is the result of Hoggatt and Hansel [2]. Hence their result is a very special case of our general theorem.

By taking different values for r_{1} and r_{2}, we can obtain several configurations which yield products of binomial coefficients which are squares. In fact, one can build up a long serpentine configuration, or snowflake curves, as noted by Hoggatt and Hansel.

Note that the theorem holds for generalized binomial coefficients (and hence for qbinomials), and in particular for the Fibonomial coefficients.

RE FERENCES

1. A. K. Gupta, "On a 'Square' Functional Equation," unpublished.
2. V. E. Hoggatt, Jr., and Walter Hansel, "The Hidden Hexagon Squares," Fibonacci Quarterly, Vol. 9, No. 2 (April, 1971), pp. 120 and 133.
3. R. G. Stanton and D. D. Cowan, "Note on a 'Square' Functional Equation," Siam Review, Vol. 12 (1970), pp. 277-279.

LETTER TO THE EDITOR

Dear Editor:
Here are two related problems for the Fibonacci Quarterly, based on some remarkable things discovered last week by Ellen Crawford (a student of mine).

Problem 1. Prove that if m and n are any positive integers, there exists a solution x to the congruence

$$
\mathrm{F}_{\mathrm{x}} \equiv \mathrm{~m}\left(\text { modulo } 3^{\mathrm{n}}\right)
$$

Solution. Let m be fixed: we shall show that it is possible to solve the simultaneous congruences
(*)

$$
\mathrm{F}_{\mathrm{x}} \equiv \mathrm{~m}\left(\operatorname{modulo} 3^{\mathrm{n}}\right)
$$

$$
\left.\mathrm{F}_{\mathrm{x}}+\mathrm{F}_{\mathrm{x}+1} \neq 0 \text { (modulo } 3\right)
$$

This is clearly true for $n=1$. It is also easy to prove by induction, using

$$
F_{m+n}=F_{m-1} F_{n}+F_{m} F_{n+1},
$$

