DIAGONAL SUMS OF THE TRINOMIAL TRIANGLE

V. E. HOGGATT, JR., and MARJORIE BICKNELL
 San Jose State University, San Jose, California 95192

In an earlier paper [1], a method was given for finding the sum of terms along any rising diagonals in any polynomial coefficient array, given by

$$
\left(1+x+x^{2}+\cdots+x^{r-1}\right)^{n}, \quad n=0,1,2, \cdots, \quad r \geq 2,
$$

which sums generalized the numbers $u(n ; p, q)$ of Harris and Styles [2], [3]. In this paper, an explicit solution of the general case for the trinomial triangle is derived.

If we write only the coefficients appearing in the expansions of the trinomial $(1+x+$ $\left.x^{2}\right)^{n}$, we have

| 1 | | | | | | | | | | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 1 | 1 | | | | | | | | |
| 1 | 2 | 3 | 2 | 1 | | | | | | |
| 1 | 3 | 6 | 7 | 6 | 3 | 1 | | | | |
| 1 | 4 | 10 | 16 | 19 | 16 | 10 | 4 | 1 | | |
| 1 | 5 | 15 | 30 | 45 | 51 | 45 | 30 | 15 | 5 | 1 |

Call the top row the zero ${ }^{\text {th }}$ row and the left-most column the zero ${ }^{\text {th }}$ column. Then, the column generating functions are

$$
G_{0}=\frac{1}{1-x}, \quad G_{1}=\frac{x}{(1-x)^{2}}, \quad G_{2}=\frac{x}{(1-x)^{3}},
$$

$$
\begin{equation*}
G_{n+2}=\frac{x}{1-x}\left(G_{n+1}+G_{n}\right), \quad n \geq 0 . \tag{1}
\end{equation*}
$$

We desire to find the sums $u(n ; p, q)$ which are the sums of those elements found by beginning in the zero ${ }^{\text {th }}$ column and the $n^{\text {th }}$ row and taking steps p units up and q units right throughout the left-justified trinomial triangle. Let

$$
\begin{equation*}
G=\sum_{n=0}^{\infty} x^{n p} G_{n q}=\sum_{n=0}^{\infty} u(n ; p, q) x^{n} \tag{2}
\end{equation*}
$$

Our first problem is to find a recurrence for every $q^{\text {th }}$ column generator. We need two sequences,
(3)

$$
\mathrm{P}_{\mathrm{n}}(\mathrm{x})=\frac{\alpha^{\mathrm{n}}-\beta^{\mathrm{n}}}{\alpha-\beta}, \quad \mathrm{Q}_{\mathrm{n}}(\mathrm{x})=\alpha^{\mathrm{n}}+\beta^{\mathrm{n}}
$$

Both $\mathrm{P}_{\mathrm{n}}(\mathrm{x})$ and $\mathrm{Q}_{\mathrm{n}}(\mathrm{x})$ obey

$$
u_{n+2}(x)=\frac{x}{1-x}\left(u_{n+1}(x)+u_{n}(x)\right)
$$

So let

$$
A=\frac{x}{1-x}
$$

then
(4)

$$
\begin{aligned}
P_{n+2}(x) & =A\left(P_{n+1}(x)+P_{n}(x)\right) \\
Q_{n+2}(x) & =A\left(Q_{n+1}(x)+Q_{n}(x)\right) \\
\alpha^{n+2} & =A\left(\alpha^{n+1}+\alpha^{n}\right) \\
\beta^{n+2} & =A\left(\beta^{n+1}+\beta^{n}\right)
\end{aligned}
$$

Next, we list the first few members of $P_{n}(x)$ and $Q_{n}(x)$.

n	$P_{n}(x)$	$Q_{n}(x)$
0	0	2
1	1	A
2	A	$A^{2}+2 A$
3	$A^{2}+A$	$A^{3}+3 A^{2}$
4	$A^{3}+2 A^{2}$	$A^{4}+4 A^{3}+2 A^{2}$
5	$A^{4}+3 A^{3}+A^{2}$	$A^{5}+5 A^{4}+5 A^{3}$
6	$A^{5}+4 A^{4}+3 A^{3}$	$A^{6}+6 A^{5}+9 A^{4}+2 A^{3}$
\ldots	\ldots	\ldots

Note that the coefficients of $Q_{n}(x)$ are simply the terms appearing on rising diagonals of the Lucas triangle [4]. The coefficients of $P_{n}(x)$ and $Q_{n}(x)$ are the same as those of the Fibonacci and Lucas polynomials, and $P_{n}(1)=F_{n}, Q_{n}(1)=L_{n}$, the $n^{\text {th }}$ Fibonacci and Lucas number, respectively.

By mathematical induction, it is easy to show that

$$
\begin{equation*}
\mathrm{Q}_{\mathrm{n}}(\mathrm{x})=\mathrm{P}_{\mathrm{n}+1}(\mathrm{x})+\mathrm{AP} \mathrm{P}_{\mathrm{n}-1}(\mathrm{x}) \tag{5}
\end{equation*}
$$

Then, the general recurrence for the $k^{\text {th }}$ terms is
(6)

$$
u_{k(n+2)}(x)=Q_{k}(x) u_{k(n+1)}(x)+(-1)^{k+1} A^{k} u_{k n}(x)
$$

Then, a recurrence relation for every $q^{\text {th }}$ column generator is

$$
\begin{equation*}
\mathrm{G}_{\mathrm{q}(\mathrm{n}+2)}(\mathrm{x})=\mathrm{Q}_{\mathrm{q}}(\mathrm{x}) \mathrm{G}_{\mathrm{q}(\mathrm{n}+1)}(\mathrm{x})+(-1)^{\mathrm{q}+1} \mathrm{~A}^{\mathrm{q}} \mathrm{G}_{\mathrm{qn}}(\mathrm{x}) \tag{7}
\end{equation*}
$$

In summing elements to find $u(n ; p, q)$ from the column generators, we need to multiply the column generators by powers of x so that the coefficients summed lie along the chosen diagonals of the trinomial array. Then

$$
\begin{gather*}
G_{q(n+2)}^{*}(x)=x^{p} Q_{q}(x) G_{q(n+1)}^{*}(x)+x^{2 p}(-1)^{q+1} A^{q} G_{q n}^{*}(x) \tag{8}\\
G_{0}^{*}(x)=\frac{1}{1-x}, \quad G_{q}^{*}(x)=x^{p} G_{q}(x)
\end{gather*}
$$

Let

$$
G_{n}=\sum_{i=0}^{n} G_{i q}^{*}
$$

and

$$
\lim _{n \rightarrow \infty} G_{n}=G
$$

the generating function for the numbers $u(n ; p, q)$. We next sum Eq. (8),

$$
\sum_{i=0}^{n} G_{q(i+2)}^{*}(x)=\sum_{i=0}^{n} x^{p} Q_{q}(x) G_{q(i+1)}^{*}(x)+\sum_{i=0}^{n} x^{2 p}(-1)^{q+1} A^{q} G_{q i}^{*}(x)
$$

which becomes, upon expansion,

$$
\begin{aligned}
G_{n}-G_{q}^{*}(x)-G_{0}^{*}(x)+ & G_{(n+1) q}^{*}(x)+G_{(n+2) q}^{*}(x) \\
=x^{p} Q_{q}(x) G_{(n+1) q}^{*}(x) & +x^{p} Q_{q}(x) G_{n}-x^{p} Q_{q}(x) G_{0}^{*}(x) \\
& +x^{2 p}(-1)^{q+1} A^{q} G_{n}
\end{aligned}
$$

Collecting terms, our sum simplifies to

$$
G_{n}\left(1-x^{p} Q_{q}(x)-x^{2 p}(-1)^{q+1} A^{q}\right)=G_{0}^{*}(x)\left(1-x^{p} Q_{q}(x)\right)+G_{q}^{*}(x)+R_{n}
$$

where R_{n} involves only terms involving $G_{(n+1) q}^{*}(x)$ and $G_{(n+2) q}^{*}(x)$. It can be shown that

$$
\lim _{\mathrm{n} \rightarrow \infty} \mathrm{G}_{\mathrm{n}}^{*}(\mathrm{x})=0
$$

for $|x|<1 / r, \quad r>2$, so that $\lim _{n \rightarrow \infty} R_{n}=0$. Then, taking the limit as $n \rightarrow \infty$ of our sum and simplifying,

$$
\mathrm{G}=\frac{\mathrm{G}_{0}^{*}(\mathrm{x})\left(1-\mathrm{x}^{\mathrm{p}} \mathrm{Q}_{\mathrm{q}}(\mathrm{x})\right)+\mathrm{G}_{\mathrm{q}}^{*}(\mathrm{x})}{1-\mathrm{x}^{\mathrm{p}} \mathrm{Q}_{\mathrm{q}}(\mathrm{x})+\mathrm{x}^{2 \mathrm{p}}(-\mathrm{A})^{\mathrm{q}}}
$$

which becomes Eq. (9) from the identity given in Eq. (8):

$$
\begin{equation*}
G=\frac{G_{0}(x)\left(1-x^{p} Q_{q}(x)\right)+x^{p} G_{q}(x)}{1-x^{p} Q_{q}(x)+x^{2 p}(-A)^{q}}=\sum_{n=0}^{\infty} u(n ; p, q) x^{n} \tag{9}
\end{equation*}
$$

where $G_{n}(x)$ is defined by Eq. (1), $A=\frac{x}{1-\mathrm{x}}$, and
(10)

$$
Q_{k}(x)=\sum_{i=0}^{[(k+1) / 2]}\left[\binom{k-i}{i}+\binom{k-i-1}{i-1}\right] A^{k-i}
$$

REFERENCES

1. V. E Hoggatt, Jr., and Marjorie Bicknell, "Diagonal Sums of Generalized Pascal Triangles," Fibonacci Quarterly, Vol. 7, No. 4, Nov. 1969, pp. 341-358.
2. V. C. Harris and Carolyn C. Styles, "A Generalization of Fibonacci Numbers," Fibonacci Quarterly, Vol. 2, No. 4, Dec. 1964, pp. 277-289.
3. V. C. Harris and Carolyn C. Styles, "Generalized Fibonacci Sequences Associated with a Generalized Pascal Triangle," Fibonacci Quarterly, Vol. 4, No. 3, Oct. 1966, pp. 241248.
4. Verner E. Hoggatt, Jr., "An Application of the Lucas Triangle," Fibonacci Quarterly, Vol. 8, No. 4, Oct. 1970, pp. 360-364.
