PHI: ANOTHER HIDING PLACE

H. E. HUNTLEY

Nethercombe Cottage, Canada Combe, Hutton, Weston - Super - Mare, England

From an area A of any outline, regular or irregular, there is cut an area B, having the same outline as that of A under the following conditions: (i) The peripheries of A and B have one point O in common; (ii) B is oriented so that O and the centroids C_{a} and C_{b} of A and B are colinear. It follows that C, the centroid of the remnant $(A-B)$ also lies in the straight line $\mathrm{OC}_{\mathrm{a}} \mathrm{C}_{\mathrm{b}}$ produced.

Fig. 1

Let the ratio of the linear dimensions of A and B be $a: b$, their respective areas being $\lambda a^{2}, \lambda b^{2} ; O C_{a} / O C_{b}=a / b$.

Taking moments about O ,

$$
\lambda \mathrm{b}^{2} \cdot \mathrm{OC}_{\mathrm{b}}+\lambda\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right) \cdot \mathrm{OC}=\lambda \mathrm{a}^{2} \cdot \mathrm{OC}_{\mathrm{a}}
$$

whence, multiplying by $1 / \lambda b^{2} \cdot \mathrm{OC}_{b}$,

$$
1+\left(\frac{\mathrm{a}^{2}}{\mathrm{~b}^{2}}-1\right) \cdot \frac{\mathrm{OC}}{\mathrm{OC}_{\mathrm{b}}}=\frac{\mathrm{a}^{3}}{\mathrm{~b}^{3}}
$$

Since $(a / b)-1 \neq 0$,

$$
\left(\frac{\mathrm{a}}{\mathrm{~b}}+1\right) \cdot \frac{\mathrm{OC}}{\mathrm{OC}_{\mathrm{b}}}=\frac{\mathrm{a}^{2}}{\mathrm{~b}^{2}}+\frac{\mathrm{a}}{\mathrm{~b}}+1 .
$$

Phi, the Golden Section, is now uncovered by writing $\mathrm{OC} / \mathrm{OC}_{\mathrm{b}}=2$, giving

$$
\frac{\mathrm{a}^{2}}{\mathrm{~b}^{2}}-\frac{\mathrm{a}}{\mathrm{~b}}-1=0
$$

whence $a / b=\phi$ or $a / b=1 / \phi$.
The result is, of course, applicable to regular plane figures. In the case of the circle the centroid C of the remnant lune falls on the endpoint of the diameter of B through O .

Fig. 2

Any chord of circle A through O is cut by the circumference of B in the Golden Section: $\mathrm{PO} / \mathrm{QO}=\phi=(1+\sqrt{5}) / 2$.

THE FIBONACCI ASSOCIATION

PROGRAM OF SATURDAY, OCTOBER 20, 1973

St. Mary's College
SOME PROPERTIES OF TRIANGULAR NUMBERS
Marjorie Bicknell, A. C. Wilcox High School, Santa Clara, California
THE GOLDEN SECTION REVISITED
Edmundo Alvillar, San Francisco, California
OPERATORS ASSOCIATED WITH STIRLING NUMBERS
Elaine E. Alexander, California Polytechnic State University
ALGORITHMS FOR THIRD-ORDER RECURSION SEQUENCES
Brother Alfred Brousseau, St. Mary's College, California
ON THE DIOPHANTINE EQUATION $1+\mathrm{x}+\cdots+\mathrm{x}^{\mathrm{a}}=\mathrm{y}^{\mathrm{b}}$
Hugh Edgar, San Jose State University, San Jose, California
PASCAL, CATALAN, AND LAGRANGE WITH CONVOLUTIONS
Verner E. Hoggatt, Jr., San Jose State University, San Jose, California.

