some geometrical properties of the generalized fibonacci sequence

D. V. JAISWAL

Holkar Science College, Indore, India

1. INTRODUCTION

In this paper, some geometrical properties of the generalized Fibonacci sequence $\left\{\mathrm{T}_{\mathrm{n}}\right\}$ have been discussed. The sequence $\left\{T_{n}\right\}$ being defined by

$$
\begin{aligned}
& T_{n+1}=T_{n}+T_{n-1}, \\
& T_{1}=a, \quad T_{2}=b .
\end{aligned}
$$

On taking $\mathrm{a}=\mathrm{b}=1$, the Fibonacci sequence $\left\{\mathrm{F}_{\mathrm{n}}\right\}$ is obtained.
We shall make use of the following identities [1]

$$
\begin{gather*}
T_{m+n}=T_{m} F_{n+1}+T_{m-1} F_{n} . \tag{1.1}\\
F_{n} F_{n+m}-F_{n-s} F_{n+m+s}=(-1)^{n-s} F_{s} F_{s+m} \tag{1.2}\\
T_{m} T_{n+k}-T_{m+k} T_{n}=(-1)^{m} F_{k} F_{n-m} D \tag{1.3}
\end{gather*}
$$

where D is the characteristic number of the sequence and is given by

$$
\mathrm{T}_{\mathrm{n}}^{2}-\mathrm{T}_{\mathrm{n}-1} \mathrm{~T}_{\mathrm{n}+1}=(-1)^{\mathrm{n}} \mathrm{D} ; \quad 2 \mathrm{a}<\mathrm{b}
$$

2. THEOREM 1

Area of the triangle having vertices at the points designated by the rectangular cartesian coordinates $\left(T_{n}, T_{n+r}\right),\left(T_{n+p}, T_{n+p+r}\right),\left(T_{n+q}, T_{n+q+r}\right)$ is independent of n.

Proof. Twice the area of the specified triangle is equal to the absolute value of the determinant

$$
\left|\begin{array}{ccc}
T_{n} & T_{n+r} & 1 \\
T_{n+p} & T_{n \pm p+r} & 1 \\
T_{n+q} & T_{n+q+r} & 1
\end{array}\right| .
$$

Using (1.1) for the second column the determinant can be written as

$$
F_{r+1}\left|\begin{array}{ccc}
T_{n} & T_{n} & 1 \\
T_{n+p} & T_{n+p} & 1 \\
T_{n+q} & T_{n+q} & 1
\end{array}\right|+F_{r}\left|\begin{array}{ccc}
T_{n} & T_{n-1} & 1 \\
T_{n+p} & T_{n+p-1} & 1 \\
T_{n+q} & T_{n+q-1} & 1
\end{array}\right|
$$

The first determinant is obviously zero; in the second on alternately subtracting the second and first column from each other, the suffixes can be reduced and finally we get

$$
\pm \mathrm{F}_{\mathrm{r}}\left|\begin{array}{ccc}
\mathrm{T}_{1} & \mathrm{~T}_{2} & 1 \\
\mathrm{~T}_{\mathrm{p}+1} & \mathrm{~T}_{\mathrm{p}+2} & 1 \\
\mathrm{~T}_{\mathrm{q}+1} & \mathrm{~T}_{\mathrm{q}+2} & 1
\end{array}\right|
$$

according as n is odd or even.
On expanding the determinant along the third column, we obtain

$$
\begin{aligned}
\pm \mathrm{F}_{\mathrm{r}}\left[\left(\mathrm{~T}_{\mathrm{p}+1} \mathrm{~T}_{\mathrm{q}+2}-\mathrm{T}_{\mathrm{p}+2} \mathrm{~T}_{\mathrm{q}+1}\right)\right. & -\left(\mathrm{T}_{1} \mathrm{~T}_{\mathrm{q}+2}-\mathrm{T}_{2} \mathrm{~T}_{\mathrm{q}+1}\right) \\
& \left.+\left(\mathrm{T}_{1} \mathrm{~T}_{\mathrm{p}+2}-\mathrm{T}_{2} \mathrm{~T}_{\mathrm{p}+1}\right)\right]
\end{aligned}
$$

which on using (1.3) reduces to

$$
\pm \mathrm{F}_{\mathrm{r}}\left[\mathrm{~F}_{\mathrm{q}}-\mathrm{F}_{\mathrm{p}}-(-1)^{\mathrm{p}^{2}} \mathrm{~F}_{\mathrm{q}-\mathrm{p}}\right] \mathrm{D}
$$

Thus the area of the specified triangle is independent of n.
Particular Case. On taking $r=h, p=2 h, q=4 h, a=b=1$, we find that the area of the triangle whose vertices are $\left(F_{n}, F_{n+h}\right),\left(F_{n+2 h}, F_{n+3 h}\right),\left(F_{n+4 h}, F_{n+5 h}\right)$ is equal to the value of (2.1)

$$
\frac{1}{2} F_{h}\left(F_{4 h}-2 F_{2 h}\right)
$$

Duncan [2] has proved that the area of this triangle is

$$
\frac{1}{2}\left[F_{h}\left(F_{4 h}-F_{2 h}\right)-\left(F_{3 h} F_{4 h}-F_{2 h} F_{5 h}\right)\right]
$$

which on using (1.2) simplifies to the value given in (2.1).

3. THEOREM 2

Lines drawn through the origin with the direction ratios T_{n}, T_{n+p}, T_{n+q}, where p and q are arbitrary constants are always coplanar for every value of n.

Proof. Direction ratios of any three such lines are $T_{i}, T_{i+p}, T_{i+q} ; T_{j}, T_{j+p}, T_{j+q} ;$ T_{k}, T_{k+p}, T_{k+q}. These will be coplanar if

$$
\left|\begin{array}{ccc}
T_{i} & T_{i+p} & T_{i+q} \tag{3.1}\\
T_{j} & T_{j+p} & T_{j+q} \\
T_{k} & T_{k+p} & T_{k+q}
\end{array}\right|=0
$$

On using the relation (1.1), the left-hand side of (3.1) can be written as the sum of four determinants, each of which is zero. Hence proved.

4. THEOREM 3

Set of points designated by the cartesian coordinates (T_{n}, T_{n+p}, T_{n+q}) where p and
q are arbitrary constants and $\mathrm{n}=1,2,3, \cdots$, are always coplanar. This plane passes through the origin, and its equation is independent of n.

Proof. Equation to the plane passing through any three points of the set is

$$
\left|\begin{array}{cccc}
x & y & z & 1 \tag{4.1}\\
T_{i} & T_{i+p} & T_{i+q} & 1 \\
T_{j} & T_{j+p} & T_{j+q} & 1 \\
T_{k} & T_{k+p} & T_{k+q} & 1
\end{array}\right|=0,
$$

where i, j and k are particular values of n. Here the coefficient of x is

$$
\begin{aligned}
&=\left[\left(T_{j+p} T_{k+q}-T_{j+q} T_{k+p}\right)\right.-\left(T_{i+p} T_{k+q}-T_{i+q} T_{k+p}\right) \\
&\left.+\left(T_{i+p} T_{j+q}-T_{i+q} T_{j+p}\right)\right] \\
&=(-1)^{p} F_{q-p}\left\{(-1)^{j} F_{k-j}-(-1)^{i} F_{k-i}+(-1)^{i} F_{j-i}\right\} D .
\end{aligned}
$$

The coefficient of y is obtained on putting $p=0$ in the coefficient of x; the coefficient of z is obtained from the coefficient of y on replacing q by p; the constant term is zero as is already proved in (3.1).

Thus the equation to the plane simplifies to

$$
\begin{equation*}
(-1)^{p} F_{q-p} x-F_{q} y+F_{p} z=0 \tag{4.2}
\end{equation*}
$$

This equation is independent of n. Also it does not depend on the initial values a and b. Q.E.D.

Particular Case. On taking $a=1, b=3$ we obtain the Lucas sequence $\left\{L_{n}\right\}$. The points $\left(F_{i}, F_{i+2}, F_{i+5}\right), i=1,2,3, \cdots ;\left(L_{j}, L_{j+2}, L_{j+5}\right), j=1,2,3, \cdots$; (T_{k}, T_{k+2}, $\left.\mathrm{T}_{\mathrm{k}+5}\right), \mathrm{k}=1,2,3, \cdots$; all lie on the plane $2 \mathrm{x}-5 \mathrm{y}+\mathrm{z}=0$.

5. THEOREM 4

The set of planes

$$
\mathrm{T}_{\mathrm{n}} \mathrm{x}+\mathrm{T}_{\mathrm{n}+\mathrm{p}} \mathrm{y}+\mathrm{T}_{\mathrm{n}+\mathrm{q}} \mathrm{z}+\mathrm{T}_{\mathrm{n}+\mathrm{r}}=0
$$

where $\mathrm{p}, \mathrm{q}, \mathrm{r}$ are arbitrary constants, and $\mathrm{n}=1,2,3, \cdots$; all intersect in a given line whose equation is independent of n.

Proof. Let two such planes be

$$
\begin{align*}
& T_{i} x+T_{i+p} y+T_{i+q} z+T_{i+r}=0 \tag{5.1}\\
& T_{j} x+T_{j+p} y+T_{j+q} z+T_{j+r}=0 .
\end{align*}
$$

The equation to the line of intersection of the parallel planes through the origin is

$$
\frac{x}{T_{i+p} T_{j+q}-T_{i+q} T_{j+p}}=\frac{y}{T_{i} T_{j+q}-T_{i+q} T_{j}}=\frac{z}{T_{i} T_{j+p}-T_{i+p} T_{j}}
$$

On using (1.3) and proceeding as in (4.2) this simplifies to

$$
\frac{x}{(-1)^{p} F_{q-p}}=\frac{-y}{F_{q}}=\frac{z}{F_{p}}
$$

Similarly the line of intersection of the planes given by (5.1) meets the plane $z=0$, at the point given by

$$
\frac{x}{(-1)^{p^{2}} F_{r-p}}=\frac{-y}{F_{r}}=\frac{1}{F_{p}} .
$$

Thus the equation to the line of intersection of the planes given by (5.1) becomes

$$
\begin{equation*}
\frac{(-1)^{p} F_{p} x-F_{r-p}}{F_{q-p}}=\frac{F_{p} y+F_{r}}{-F_{q}}=\frac{z}{F_{p}} \tag{5.2}
\end{equation*}
$$

Hence proved.
Particular Case. The set of planes whose equations are

$$
\begin{aligned}
F_{i} x+F_{i+1} y+F_{i+3} z+F_{i+4}=0, & i=1,2,3, \cdots ; \\
L_{j} x+L_{j+1} y+L_{j+3} z+L_{j+4}=0, & j=1,2,3, \cdots ; \\
T_{k} x+T_{k+1} y+T_{k+3} z+T_{k+4}=0, & k=1,2,3, \cdots ;
\end{aligned}
$$

all intersect along the line

$$
\frac{\mathrm{x}+2}{1}=\frac{\mathrm{y}+3}{2}=\frac{\mathrm{z}}{-1} .
$$

I am grateful to Dr. V. M. Bhise, G. S. Tech. Institute, Indore, for his help and guidance in the preparation of this paper.

RE FERENCES

1. Brother Alfred Brousseau, An Introduction to Fibonacci Discovery, The Fibonacci Association, San Jose, California (1965).
2. Dewey C. Duncan, "Chains of Equivalent Fibonacci-wise Triangles," Fibonacci Quarterterly, Vol. 5, No. 1 (February 1967), pp. 87-88.
