By taking different values for r_{1} and r_{2}, we can obtain several configurations which yield products of binomial coefficients which are squares. In fact, one can build up a long serpentine configuration, or snowflake curves, as noted by Hoggatt and Hansel.

Note that the theorem holds for generalized binomial coefficients (and hence for qbinomials), and in particular for the Fibonomial coefficients.

RE FERENCES

1. A. K. Gupta, "On a 'Square' Functional Equation," unpublished.
2. V. E. Hoggatt, Jr., and Walter Hansel, "The Hidden Hexagon Squares," Fibonacci Quarterly, Vol. 9, No. 2 (April, 1971), pp. 120 and 133.
3. R. G. Stanton and D. D. Cowan, "Note on a 'Square' Functional Equation," Siam Review, Vol. 12 (1970), pp. 277-279.

LETTER TO THE EDITOR

Dear Editor:
Here are two related problems for the Fibonacci Quarterly, based on some remarkable things discovered last week by Ellen Crawford (a student of mine).

Problem 1. Prove that if m and n are any positive integers, there exists a solution x to the congruence

$$
\mathrm{F}_{\mathrm{x}} \equiv \mathrm{~m}\left(\text { modulo } 3^{\mathrm{n}}\right)
$$

Solution. Let m be fixed: we shall show that it is possible to solve the simultaneous congruences
(*)

$$
\mathrm{F}_{\mathrm{x}} \equiv \mathrm{~m}\left(\operatorname{modulo} 3^{\mathrm{n}}\right)
$$

$$
\left.\mathrm{F}_{\mathrm{x}}+\mathrm{F}_{\mathrm{x}+1} \neq 0 \text { (modulo } 3\right)
$$

This is clearly true for $n=1$. It is also easy to prove by induction, using

$$
F_{m+n}=F_{m-1} F_{n}+F_{m} F_{n+1},
$$

