REFERENCES

1. A. P. Hillman and V. E. Hoggatt, Jr., "On Gould's Hexagon Conjecture, Fibonacci Quarterly, Vol. 10, No. 6 (Dec. 1972), pp. 561-564.
2. V. E. Hoggatt, Jr., and W. Hansell, "The Hidden Hexagon Squares," Fibonacci Quarterly, Vol. 9, No. 2 (Apr. 1971), pp. 120, 133.
3. Calvin T. Long, "Arrays of Binomial Coefficients whose Products are Squares," Fibonacci Quarterly, Vol. 11, No. 5 (Dec. 1973), pp. 449-456.
4. Carl L. Moore, "More Hidden Hexagon Squares," Fibonacci Quarterly, Vol. 11, No. 5 (Dec. 1973), p. 525.
(Continued from page 46.)
that

$$
\begin{aligned}
\mathrm{F}_{8 \cdot 3^{\mathrm{n}-1}} & \equiv 3^{\mathrm{n}}\left(\text { modulo } 3^{\mathrm{n}+1}\right) \\
\mathrm{F}_{8 \cdot 3^{\mathrm{n}-1}-1} & \left.\equiv 1+3^{\mathrm{n}} \text { (modulo } 3^{\mathrm{n}+1}\right)
\end{aligned}
$$

Therefore

$$
\mathrm{F}_{8 \cdot 3^{\mathrm{n}-1+\mathrm{x}}} \equiv \mathrm{~F}_{\mathrm{x}}+3^{\mathrm{n}}\left(\mathrm{~F}_{\mathrm{x}}+\mathrm{F}_{\mathrm{x}+1}\right)\left(\text { modulo } 3^{\mathrm{n}+1}\right)
$$

If x satisfies (*), then either x or $8 \cdot 3^{n-1}+x$ or $16 \cdot 3^{n-1}+x$ will be congruent to m modulo $3^{\mathrm{n}+1}$. Therefore ($*$) has solutions for arbitrarily large n.

Problem 2. The number N is said to have complete Fibonacci residues if there exists a solution to the congruence

$$
\left.\mathrm{F}_{\mathrm{x}} \equiv \mathrm{~m} \text { (modulo } \mathrm{N}\right)
$$

for all integers m. A computer search shows that the only values of $\mathrm{N} \leq 500$ having complete Fibonacci residues are the divisors of

$$
3^{5}, \quad 2^{2} \cdot 5^{3}, \quad 2 \cdot 3 \cdot 5^{3}, \quad 5 \cdot 3^{4}, \text { or } 7 \cdot 5^{3}
$$

Determine all N which have complete Fibonacci residues.
Problem 3 is submitted by the undersigned and Leonard Carlitz, Duke University, Durham, North Carolina.

Problem 3. Show that if $=e^{\pi i / n}$, then

