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1. INTRODUCTION 

In [2] , Hoggatt and Hansell show that the product of the six binomial coefficients s u r -
rounding any part icular entry in Pasca l ' s triangle is an integral square. They also observe 
that the two products of the alternate tr iads of these six numbers are equal. Quite r emark -
ably, Gould conjectured and Hillman and Hoggatt [ l] have now proved that the two greatest 
common divisors of the numbers in the above-mentioned tr iads are also equal though their 
leas t common multiples a r e , in general , not equal. Hillman and Hoggatt also generalize the 
greatest common divisor property to more general a r rays . 

The integral square property was further investigated by Moore [4] , who showed that 
the result is true for any regular hexagon of binomial coefficients if the number of entr ies 
per side is even, and by the present author [3] , who generalized the ear l ie r resul ts to non-
regular hexagons, octagons, and other a r rays of binomial coefficients whose products are 
squares. 

In the present paper, we generalize the equal product property of Hoggatt and Hansell 
along the lines of [3] and also make some observations and conjectures regarding a general-
ized greatest common divisor property. 

It will suit our purpose to represent Pasca l ' s triangle (or, more precisely, a portion of 
it) by a lattice of dots as in Fig. 1. We will have occasion to refer to various polygonal fig-
ures and when we do, unless expressly stated to the contrary, we shall always mean a simple 
closed polygonal curve whose vertices are lattice points. Occasionally, it will be convenient 
to represent a small portion of Pasca l ' s triangle by le t ter arranged in the proper position. 

Fig. 1 Fig. 2 
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2. SETS OF BINOMIAL COEFFICIENTS WITH EQUAL PRODUCTS 

As in [3] , we begin by deriving a fundamental lemma which is basic to all of the other 
results of this section. 

Lemma 1. Consider two parallelograms of binomial coefficients oriented as in Fig. 2 
and with corner coefficients a, b, c, d and e, f, g, h as indicated. Then the products 
acfh and bdeg are equal. 

Proof. For suitable integers m, n, r , s, and t, the binomial coefficients in question 
may be represented in the form 

* - ( \ + B ) ' b = ( n ) ' c = (n+\r)> * = ( m n \ \ + r ) ' 

_ / m + r \ f = ( m \ = ( m + s \ , = / m + s + r \ 
c I n + r + t J ' y n + r + t y ' g ^ n + s + r + t y ' \n + a + r + t J ' 

Thus, the desired products are 

a c fh = <m + s)'- . (m + r)t 
n! (m - n + sjl (n + r)! (m - n)! 

ml _ (m + s + r)l 
(n + r + t)! (m - n - r - t)l ' (n + s + r + t)! (m - n - t)! 

and 
, , _ m! (m + s + r)! 
D Q e g n! (m - n)! " W+ r)(m - n + s)! 

(m + r) (m + s)t 
(n + r + t)! (m - n - t)t ' (n + r + s + t)! (m - n - r - t)! 

and these are clearly equal as claimed. 
As a first consequence of Lemma 1, we obtain the equal product result of Hoggatt and 

Hansell. 
Theorem 2. Let a, b, c, d, e, f, and g denote binomial coefficients as in the a r ray 

a b 
f g c . 

e d 

Then aec = fbd. 
Proof. The parallelograms a, f, e, g and b, g, d, c are oriented as in Lemma 1. 

Therefore, fgbd = aegc and this implies the desired result. 
By essentially the same argument, we obtain the following more general statement about 

products of coefficients at the vert ices of hexagons in Pasca l ' s triangle. 
Theorem 3. Let m > 1 and n > 1 be integers and let H be a convex hexagon whose 

sides lie on the horizontal rows and main diagonals of Pasca l ' s triangle. Let the number of 
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coefficients on the respective sides of H be m, n, m, n, m, and n in that order , and let 
a, b, c, d, e, and f be the coefficients in cyclic order at the vert ices of H. Then ace = 
bdf. 

Proof. Without loss in generality, we may take m to be the number of coefficients 
along the bottom side of H. If we consider two m-by-n parallelograms with a common ve r -
tex and with corner coefficients a, b, c, d, e, f, and g as in Fig. 3, then, again by Lemma 
1, fgbd = aegc and this implies the equality claimed. 

Fig. 3 

Now, as in [3] , let us call the hexagons of Hoggatt and Hansell fundamental hexagons 
and say that a polygonal figure P on Pasca l ' s triangle is tiled with fundamental hexagons if 
P is "covered" by a set F of fundamental hexagons F in such a way that 

i. The vertices of each F in F a re coefficients in P or in the interior of P. 
ii. Each boundary coefficient of P is a vertex of precisely one F in F, and 

iii. Each interior coefficient of P Is interior to some F in F o r is a vertex shaped 
by precisely two elements of F. 

We can then prove the following result. 
Theorem 4. Let P be a polygonal figure on Pasca l ' s triangle with boundary coef-

ficients a1? a2, • • • , an in order around P . If P can be tiled by fundamental hexagons, 
then n = 2s for some s ^- 3 and 

s s 
" E 2 i -1 = " a 2 i • 

1=1 1=1 

Proof. Suppose that P can be tiled with r fundamental hexagons. The proof p ro -
ceeds by induction on r. Clearly the least value of r is 1 which occurs only in the Case Of 
the fundamental hexagon itself. In this case , n = 6 and the resul t is true by Theorem 2. 
Now suppose that the result is true for any polygon that can be tiled with fewer than k funda-
mental hexagons where k > 1 is fixed and let P be a polygon that can be tiled with k fun-
damental hexagons. Let H be one of the hexagons which tiles P and contains at least one 
boundary point of P . We distinguish five cases. 
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Case 1. H contains just one boundary point of P . Without loss in generality, we 
may let a be the boundary point of P which is in H. Let af , a' ,.., aT

 1 0 , a' ini and 
J n J F n n n+1 n+2 n+3 

a' . denote the other five boundary points of H in order around H. Let P be the poly-
gon obtained from P by deleting H. Then the boundary points of P are a1} a2, • • • , 
a .,, af , a' , aT

 l 0 , a' o5 and a' , ,. Thus, m = n + 4. Also, since P can be n-1 n n+1 n+2 n+3 n+4 m 
tiled by k - 1 fundamental hexagons, n + 4 = m = 2t for some t and 

a.. a3 • • • a - a? ,., a' 0 = a2 a4 • • • a 0 a? af , 0 af , , . 1 6 n -1 n+1 n+3 z 4 n-2 n n+2 n+4 

But, since H is a fundamental hexagon, it follows that 

a n a n + l a n + 3 " a n a n+2 a n+4 

and this clearly implies that 

s s 
. " a 2 i - i = " a 2 i 
1=1 1=1 

since n = 2t - 4 = 2s. This completes the proof for Case 1. 
Cases 2-4. In these cases , respectively, H contains 2, 3, 4, or 5 boundary points of 

P . We omit the proofs of these cases since they essentially duplicate the proof of Case 1, 
This completes the proof. 

With Theorem 4 and Lemma 1 as our principal tools we are now able to give several 
quick resul ts . 

Theorem 5. Let H be a convex hexagon with an even number of coefficients per side, 
with sides oriented along the horizontal rows and main diagonals of Pasca l ' s tr iangle, and with 
boundary coefficients al5 a2, • • • , a n in order around H . Then n = 2s for some s -̂ 3 
and 

s s 
n

n
 a 2 i - i = n a 2 i • 

1=1 1=1 

Proof. This is an immediate consequence of Theorem 4 since H can be tiled by fun-
damental hexagons as shown in Theorem 5 of [3]. 

Theorem 6. Let K be any convex octagon with sides oriented along the horizontal and 
vertical rows and main diagonals of Pasca l ' s triangle and with boundary coefficients al9 a2, 
• • • , a„ in order around K . Let the number of coefficients on the various sides of K be n n n 
2r , 2s, t, 2u, 2v, t, and 2s as indicated in Fig. 4. Then n = 2h for some h > 4 and 

s s 
" a 2 i - l = " a 2 i 

1 = 1 1=1 
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2s 2s 
2r 

Fig. 4 Fig. 5 

Proof. The proof is the same as for Theorem 5 and will be omitted. 
We observe that the convexity conditions in both Theorems 3 and 5 are necessary since 

neither result is true for the hexagon of Fig. 5. Also, it is easy to find examples of convex 
hexagons where the resul ts of Theorems 3 and 5 do not hold if the conditions on the number of 
elements per side are not met. In fact, we conjecture that the conditions in these theorems 
are both necessary and sufficient. On the other hand, the convexity condition of Theorem 6 
is not necessary since the result holds for the octagon of Fig. 6 which is clearly not convex. 
We make no conjecture regarding necessary and sufficient conditions for the. result of Theo-
rem 6 to hold for octagons in general, or indeed, for hexagons whose sides may not lie along 
the horizontal rows and main diagonals of Pasca l ' s triangle. We note that the octagon of Fig. 
6 cannot be tiled by fundamental hexagons but can be tiled by pairs of properly oriented "fun-
damental paral lelograms" as indicated by the shading in the figure. Thus, the most general 
theorem for these and other polygons will most likely have to be couched in te rms of tilings 
by sets of pairs of fundamental paral lelograms. 

<$/ <>/ \</ \ / 
,\ / ' \ A-\ /Z \ / \> /. >\ 
/ W ^? T5:/ N . / \ 

'vh A\ i'\ 

Fig. 6 Fig. 7 
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3. ADDITIONAL COMMENTS ON EQUAL PRODUCTS 

Theorem 3 gives an equal product resul t for the corner coefficients of hexagons and it 
is natural to seek s imilar resul ts for octagons. It is easy to find octagons like those in Figs. 
4 and 6 for which the equal product property on vert ices does not hold. Nevertheless, it is 
possible to find classes of octagons for which the equal product property does hold for the 
products of alternate corner coefficients. 

Theorem 7. Let K be a convex octagon formed as in Fig. 7 by adjoining paral lelo-
grams with r and s and r and t elements on a side to a parallelogram with r elements 
on each side. If the corner coefficients are al5 a2, • • • , a8 as shown, then 

a 1 a 3 a 5 a 7 = a 2 a 4 a 6 a 8 . 

Proof. We have only to observe that a1? a4, a5, a8 and a2, a3, a6, a7 are vert ices of 
pai rs of parallelograms oriented as in Lemma 1. The resul t is then immediate. 

Again it is clear that the convexity condition of Theorem 7 is not necessary. The proof, 
after all , res ts on the presence of the properly oriented pai rs of paral lelograms. In p r e -
cisely the same way we show that a1 a3 a5 a7 = a2 a4 a6 a8 for each of the three octagons of 
Fig. 8. Note that for K2 the two products are not products of alternate vert ices around the 
octagon. 

Clearly the preceding methods can be used to obtain a wide variety of configurations 
of binomial coefficients which divide into sets with equal products. As illustrations we give 
several examples of polygons (sometimes not closed, simple, or connected) with this property. 

a7 a4 a7 a6
 a7 a6 

Fig. 8 

4. THE GREATEST COMMON DIVISOR PROPERTY 

As mentioned in Section 1, if the a r ray 

a b 
c d e 

f g 

represents coefficients from Pasca l ' s triangle, then afe = cbg and Hillman and Hoggatt 
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" a 2 i - l = * a 2 i 1=1 1=1 

12 12 

" a 2 i - l = " a 2 i 
1=1 1=1 

II 

ai a2 

* * * * 

A7 
a5 

* * * 3ft 

a10 a9 

" a 2 i - l = . " a 2 i 
1=1 1=1 

III 

at a2 a3 a4 
* * * * 

a17 a18* 
* * * * 

a24 / \ l 9 
* 

* 
a23 

* * 
4 * ia2 0 I a7 

a22 a21 
* * * r as 

12 a n a io a9 

12 12 

. n ^ i - l = .V2i 1=1 1=1 

IV 

a4 a5 
a 

i 
3 

* 
a l 6 

s : 

a n 

* 
a20 

a l 
* 

i 

' 1 
T 

« 1 

1 a 

a12 an 
11 
n a0 

11 
= n a0 . 1 2 i - l . " 2i i = l i= l 

10 
n a0 

10 

. - * 2 i - l ~ " a 2 i i = l i = l 
VI 

F ig . 9 
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have shown that (a, f, e) = (c, b, g) where we use parentheses to indicate greatest com-
mon divisors. In view of the preceding results on equal products, one wonders if the great -
est divisor property also holds in more general settings. 

Unfortunately, it is easy to find examples of regular hexagons with sides oriented along 
the main diagonals and horizontal rows of Pasca l ' s triangle where the two alternate tr iads of 
corner coefficients have different greatest common divisors in spite of the fact that theyhave 
equal products by Theorem 3. We have such examples for hexagons with 3 , 4 , 5 and 6 co-
efficients per side and conjecture that the property only holds in general for the fundamental 
hexagons of Hoggatt and Hansell. Also, we observe that, for the parallelograms of Fig. 2, 
the products acfh and bdeg are equal but that (a, c, f, h) is not necessari ly equal to 
(b, d, e, g). At the same time, we have been unable to find examples of hexagons of the type 
of Theorem 5 where the greatest common divisor of the two sets of alternate boundary coef-
ficients are not equal. Of course, these greatest common divisors are usually equal to one, 
but the three regular hexagons with four elements per side whose upper left-hand coefficients 
a r e , respectively,; 

\S)' Ce)' and (") 
have pai rs of greatest common divisors equal to 13, 13, and 34, respectively. We con-
jecture that the greatest common divisors of the two sets of alternate boundary coefficients 
for the hexagons of Theorem 5 are equal. 

This is not t rue , however, of the octagons of Theorem 6, since, in part icular , 

((:)• (••)• (0- (:))->• 
( ( ! ) • ( : ) • ( : ) • ( : ) ) -

and these are alternate boundary coefficients of such an octagon. Of course , this makes it 
c lear that not all polygons that can be tiled with fundamental hexagons have the equal greatest 
common divisor property. At the same t ime, some figures that cannot be tiled with funda-
mental hexagons appear to have the equal greatest common divisor property. For example, 
this appears to be true of the octagon of Fig. 11 in [3] though we have no proof of this fact. 
This leaves the question of the characterization of figures having the equal greatest common 
divisor property quite open. 

5. GENERALIZATIONS AND EXTENSIONS 

There are an infinitude of other Pascal- l ike a r rays in which the Hexagon Squares prop-
er ty holds. For example, the Fibonomial triangle and the generalized Fibonomial triangle. 
If, indeed we replace F by f (x), the property holds and thus for each x integral yields 
an infinitude of such a r rays . For example, if x = 2, we get the Pell numbers, or every 
k Pell Number Sequence works. 
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Therefore 
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3n-

F 
8-

-i+x 

F 
8 

3n-

s 

. 3 n - i 

-1-! 

F H 
X 

3 n (modulo 3 n + 1 ) 

1 + 3 n (modulo 3 n + 1 ) . 

s F + 3 n ( F + F _,,) (modulo 3 n + 1 ) . 
X X + l 

If x satisfies (*), then either x or 8-3 + x or 16°3 ~ + x will be congruent to m 
modulo 3 . Therefore (*) has solutions for arbi t rar i ly large n. 

Problem 2. The number N is said to have complete Fibonacci residues if there ex-
is ts a solution to the congruence 

F = m (modulo N) 

for all integers m. A computer search shows that the only values of N ^ 500 having com-
plete Fibonacci residues are the divisors of 

35, 22.53, 2-3-53, 5-34, or 7-53 . 

Determine all N which have complete Fibonacci residues. 
Problem 3 is submitted by the undersigned and Leonard Carli tz, Duke University, Dur-

ham, North Carolina. 
Problem 3. Show that if = em'n9 then 

(Continued on page 82.) 


