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PART 1. INTRODUCTION 

As harmless as it may appear, the Fibonacci sequence has provoked a remarkable 
amount of research. It seems that there is no end to the resul ts that may be derived from 
the basic definition 

F ^ 0 = F _,_., + F and F0 = 0 and F4 = 1, 
n+2 n+1 n u l ' 

which Leonardo of Pisa found lurking in the simple rabbit problem. For example, an exten-
sion of the definition yields the so-called Lucas numbers: 

L 4 0 = L , . + L and Lft = 2 and Li = 1. n+2 n+1 n u 1 

Evidently, any two integers may be used "to s tar t" the sequence. However, it is well known 
that there is an extraordinary relationship between the Fibonacci and Lucas sequences. In 
part icular: 

F n = F L and F _,, + F n = L . 
2n n n n+1 n-1 n 

Precise ly where does this peculiarity a r i se? 
Then, again, many remarkable summation formulae are available. In part icular , the 

n partial sum of the Fibonacci sequence is expressed by F + 2 - 1. The method used gen-
erally for proving such formulae is induction on the index. This involves 

1. a guess provoked by the investigation of individual cases , 
2. an efficient formulation of the guess, and 
3. a proof by finite induction. 

The drawbacks to this method are obvious. F i r s t , it depends very heavily on insight and 
cleverness , which qualities, while being desirable in any mathematician, do not lead to r e -
sults very quickly. Second, this method is entirely inadequate for cases involving bulky for-
mulations, and, of course, many times a result suggested by individual observation does not 
immediately come in convenient form. Finally, such a method is unable, to relate and gener-
alize resul ts . Mathematics is incomplete until the specific, and perhaps surprising, facts 
are brought back to a generalization from which they maybe deduced. Not only does this give 
a foundation to the conclusions themselves, but it enables one to draw further, unsuspected 
conclusions, which are beyond inductive methods. Furthermore, as a result of a generalized 
deduction, the formulation will be more elegant and notationally consistent. 

11 
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What is required then, is a generalization of the Fibonacci sequence, discarding the 
incidental. At points this project will appear to be unnecessarily removed from the simplic-
it ies of the original sequence, but attempts will be made to show the connections between the 
more general case and the more familiar resul ts . 

DEFINITIONS 

The Fibonacci sequence is based on an additive relationship between any term and the 
two preceding te rms. In our generalization, it is necessary to exploit two aspects of this r e -
lationship: we shall make it a linear dependence, and it will involve the preceding p t e rms . 
Here, and throughout, f will note the general additive sequence: 

(1) f . = a-f _,_ - + a„f j . 0 + ••• + a f (n = 0, 1, 2, • • •) . 
n+p 1 n+p-1 2 n+p-2 p n 

It seems essential to the spirit of these sequences that they be integral. To insure this, we 
must demand that the set 

1 

be integers. This set will be called the spectrum. But, returning to (1) and letting n = 0: 

(2) f = Y ^ a. f . , 
k=l 

reveals that we must specify the first p te rms of the sequence in order that the others may 
be obtained. The set of integers 

0 

so specified will be called the initial set , or the initials. 
It might be mentioned here that the Fibonacci sequence is obtained by letting p = 2 and 

taking the spectrum { l , l } and the initials { o , l } . And the Lucas sequence has p = 2, 
spectrum {l , l} and initials {2, l} . 

We wish now to extend the definition (1) so that negative values for the index are allowed. 
Using the Mback-upn approach, we obtain 

f ., = a . f 0 + • • • + a n fn + a f - , p -1 1 p-2 p -1 0 p -1 
or 

p -1 

-1 a 1 f p - l " / „ a k f p - l - k 
k=l 
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Continuing, it can be seen that, for any n = 0, 1, 2, • • • , 

(3) f n = -II f -Va , f . 
-n a 1 p-n x™^ k p-n-k 

P \ k=l 

Clearly, in order to maintain an integral sequence for all values of the index, positive and 
negative, it is necessary to take a = ±1. In any case , we have that a2 = 1. 

UNARY SEQUENCES (p = 1) 

The number p of necessary initial values classifies the sequence as unary, binary, 
ter t iary, and so on. The analysis of the unary sequences is ra ther trivial. The spectrum is 
{aj} and the initial set {f0}. But since p = 1, we must have 2LX = ±1, so that (1) comes 
down to: 

or , immediately: 
f ,- = ±f n+1 n 

f = (±l ) n + 1 f n+1 K } 0 

In addition, it would seem altogether desirable to eliminate those sequences which can be 
"reduced" by dividing each te rm by a constant. That would leave only the primitive sequences 
for which if d divides f. for each value of k, then d = 1. In addition, we eliminate those 
trivial sequences with each term zero. These conditions are met by demanding that neither 
the spectrum nor the initial set be all zero , and that no constant be divisible into all the s p e c -
trum or initial set. With these res t r ic t ions , we see that the unary sequences become: 

f, = 1, for all k, or 

fk = ( -D k . 

This simply ends all discussion of unary sequences. 

ALGEBRAIC GENERATORS 

One of the most common manifestations of additive recursive sequences is the power 
se r ies expansion of certain functions. For example, a short calculation leads one to con-
clude that: 

QO 

1 - x " x2 k=o 

The actual derivation of this resul t s tems directly from the definition of the Fibonacci s e -
quence. In what follows, we will use the same derivation in a generalized form. What we 
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want to discover is an expression for: 
00 

(4) ZX = *(X)' 
k=0 

where, by (1): 
P 

n+p ' J k n+p-k 
k=l 

Now, we multiply (1) by x , and sum over the index n, so that: 

00 

Z-J n+p 
n=0 

P 00 

= V a x k V f xn+p~k 
/ * k / j n+p-k 
k=l n=0 

But, taking into account (4), we may rearrange this expression, and: 

/ p \ p -1 / k 

* W ( X "E V* = fo + E X 1 fk " Z a J f M 
\ k=l / k=l \ j=l 

This singularly awkward expression can be made manageable by making the somewhat 
arbi t rary definition of a0 = - 1 . The introduction of a0 greatly simplifies the formulation of 
the required function: 

P-1 k k 
E x E ai f

k-i 
(5) cD(x) = k = ° J=Q 

k=0 

We need hardly say that this is the required expression, which reduces to the familiar Fib-
onacci power se r ies when p = 2, aA = a2 = 1, and f0 = 0, ix - 1. But, further investi-
gation of (5) leads to considerations which will be of crucial importance later. F i r s t , we r e -
mark that the denominator is a p -degree polynomial: 

-a0 + aAx + a2x2 + • • . + a p xP , (a0 = -1) , 

which will be called the spectral polynomial. 
Then, with regard to the numerator, the following definition will be made: 

(6) h . = - Y ^ a . f ^ . for 0 <, k j£ 
m , k JLJ 3 m+k-j "* 

j=0 
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In other words, h . is a partial sum of te rms . For example: m, K 

n A = - a A f = f 
m, 0 0 m m 

h = 0 cf (1). 
m , p 

h - = a f _, , 
m , p ~ l p m - 1 

and, for convenience: 

( 7 ) h k = h o , k = f k " a i f k - i a k f o • 

The introduction of (7) into (5) yields the remarkably concise: 

P " 1 k 

(5f) *w = XX x k = -——-
k=0 K 

THE Q-SEQUENCE 

In any f-sequence, it is possible to choose the initial set as any set of p consecutive 
t e r m s , so that two "different" sequences may actually differ only in their indices. It seems 
then necessary to consider some sort of fundamental sequence. This fundamental sequence 
has the simplest non-trivial initial set; namely {o, 0, • • • , 0, l } . The Fibonacci sequence 
is a binary case. These sequences exist for all values of p, and they will be called Q-
sequences. Referring to (6), we will rename the partial sums h . : 

(8) 

and, from (7): 

m , k 

k 
= - \ ^ a . Q ^ . for 0 ^ 

3=0 

k 

k 0,k / ^ 3 k-j 
3=0 

but, from the definition of Q-sequences, Q, = 0 for 0 ^ k ^ p - 2, and Q = 1: 

Hk = 0, for 0 < k ^ p - 2, or k = p , 

H - = 1 . p -1 

Using these resul ts in (5T), we have: 
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I. x n 
k IFO k xP" 1 

°° - £ Hf_x 
(9) ^ Q k X

! 

P k P 
k=o y a. x - y 

The right-hand member of (9) may be treated as a geometric se r ies : 

1" JL akx X^0 k=0 / 

and successive binomial expansions of the polynomial in parenthesis gives: 

( o o P . \ / oo ki v P t 

EZ(v1)' = q E E ^ - w r ( v ) : 
kt=0 k=0 x 7 / \ k i = 0 k2=0 x ' k=2 x ' 

and so on. After p steps, we may collect coefficients of x ^~ in (9) and equate them, 
obtaining: 

s(SCXS)-(V)* <*» < w - Z . U J U J U ; - l IT)&•*&*'••• i r k p % p • 

where the sum is taken over all {k.} such that 

P 

2>. 
P 

m 
I 

i=l 

and m + p - 1 > 0. Looking at the binary case (p = 2), we discover that 

%+± E/ n - i \ n-2i i 
I i ) a i ** 

i=0 \ / 
where 

(M = 0 for 0 < n < k, and n + 1 > 0 
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so that, for SLt = a2 = 1: 

F n+1 §C'-) 
which, of course, is the well-known ' 'r ising diagonal" result for Fibonacci numbers, derived 
from Pasca l ' s triangle. And, for comparison, here is the ternary case: 

(12) Qn+2 = E sf-i-'Xir^ 
Remark. In this section, and throughout the res t , we choose to make the agreement 

that I . J = 0 for all 0 < n < k. This appears a bit arbi t rary , but it is used since it s im-
plifies the summation notation. Notice that the upper index on the summation may be taken 
as infinity, since by our agreement the binomial coefficients vanish for large enough k. It 
might be pointed out that the real upper index, for example, in (11) is | [ n / 2 | , that i s , the 
greatest integer in n/2 . The bulky notation required for (10) in particular in this form war -
rants using our more simplified method. 

THE Q-SEQUENCE AS BASIS 

The fundamental nature of the Q-sequence is clearly shown in the following argument. 
We return to (5f), and rearrange slightly: 

00 
k IV 

P-1 k 

- E \ x 

k=0 R 

p k V a, x 
- Evk"p + 1 

k=0 

/ 
P-1 

xK 

X k E akx k=0 

then, taking into account (9), we have: 

00 p - 1 / 00 

k=0 k=0 \ i=0 

HI—D+l 
Comparing the coefficients of x F in this expression, we find that: 

p -1 
(13) f ^ = Y ^ h. Q . 8 

m-p+1 Z^J k ^ m - k " 
k=0 
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This clearly shows the basic nature of the Q-sequence — it forms a basis set for any other 
sequence having the same spectrum. But a more useful formulation may be derived by con-
sidering (7), and substituting into (13): 

(14) 

and then, using (8): 

we have, from (14): 

(15) 

p -1 k 
f ,- = -V^yVf, .Q . , 
ni-p+1 ' J ' J 3 k-j m-k 

k=0 j=0 

k 

~ Z-^i j m-p+1+k-j m-p+ l ,k ' 
j=0 

P-1 
f m-p+l = Y ^ H m - p + l . k f p - k - l ' 

k=0 

and finally, an obvious adjustment of index leaves us with: 

P-1 
( 1 6 ) fm = S Hm,k fp-l-k w h e r e H m , k i s ^ i v e n * ( 8 ) ' 

k=0 

Remark. For certain values of k, an alternative form of (8) is desirable: 

k p k 
H m , k = Qm+k - 2 - / a j Q m + k - j = Z ^ a j Q m + k - j " / , a i Q m + k - i 

3=1 3=1 3=1 

p-k 
(17) H . = y ^ a . ^.Q 

m , k / J k+j m- j 
3=1 

THE H-SEQUENCE 

What appeared in (8) to be merely notational convenience can now show more positive 
resul ts . For example, a l inear combination of p consecutive H . over the m index (in 
the spir i t of (1)): 



1974] LINEARLY RECURSIVE SEQUENCES OF INTEGERS 19 

P P k 

Z ^ a j m- ] , k ~ " ^ ^ a j Z - i a i Q n i - j + k - i 
j=l j=l i=0 

k p 
(18) = -EaiEaJQm+k-H 

i=0 j=l 

X a i Q i m+k-i m , k 
i=0 

shows that H . is itself an f-sequence for any choice of k. In fact, for k = 0, the H-
sequence reduces to the Q-sequence due to: 

0 

H n = - y a . Q . = -aAQ = Q m,Q £mmj j m- j O^m m 
3=0 

But, for any choice of k, we must have in general , that H-sequences satisfy (16), since they 
are f-sequences: 

P-1 
(19) H . = Y ^ H .H n . . 

m , k Z^ m , j p - l - j , k 

3=0 

which is a remarkable formula suggestive of a whole ser ies of important resul ts . 
PART 2. MATRIX REPRESENTATIONS 

A great many of the familiar Lucas and Fibonacci identities have been shown to be r e -
lated to the propert ies of matr ices . The attempt to generalize these results for higher o r -
ders of sequence directly leads to various sor t s of results depending largely on the aspect 
taken for generalization. But our previous work has led up to the following formulae: 

H , = - / a.Q M • for 0 ^ k ^ p m , k x™^ j ^ m + k - j "* ^ ^ (8) 

and 

(19) 

as well as 

(16) 
i n 

k=0 

These three equations are strongly suggestive of matrix multiplication, particularly the last 
(16). In fact, if the following definitions are made, a singularly simple formulation may be 
given: 

j=o 

H m , k : 

f = m 

p-1 
= y^H .H 

Z—/ m , j p-
j=o 

p-1 
> H f / J m , k p -1 

+~h 

-k 

,k 
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(20) 

Then: 

and 
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H 
H1J 

TT 
m + p - 1 , 0 " " ' m + p - l , p - l 

H 

H 
H° =1 

p-1 ,0 

m , 0 

H 

H 

p - l . p - 1 

H 0,0 . . . w 0 , p - l 

m , p - l 

I , the identity, 

H1 = H 

0 .0 

A glance at (19) shows that the matr ix II is really multiplicative; that i s : 

Tm+n H m H n H 

[Feb. 

since (19) is merely a statement of such a multiplication, row by column. Here again, what 
began in (8) as mere convenience, is seen to have something of a fundamental character with 
regard to the recursive sequences. Now, in addition, let us define: 

(21) F —m 

F = H m F n 

Finally, then, it is evident that (16) may be written in the matrix form: 

(22) 

A part icularly useful remark may be inserted here: 

(23) d e t H m = ( d e t H ) m = (a ( - l ) p + 1 ) m . 

This can be seen by considering definitions (20). However, in order to maintain a sequence 
which has integers for all values of the index we need a = ±1, as was seen in (3). Hence, 

m for any value of m, d e t l l = ±1. 
Also, the harmless observation that II H = II , when compared entry for entry 

leads to the remarkable: 

(24) 
k=l 

TT TT _ TT 

m+p-k , j - l n+p- i ,k - l m+n+p-i , j - l 
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which is actually a generalization of (19). 
In part icular , by taking i = p and j = 1 in (24), and recalling that H ft = Q in 

(8), and then rearranging index in (24): 

P - l 
(25) JL«J n,l Q. = Q. 

k=0 

GENERAL REDUCTIONS 

Rather than considering column matr ices of f. , we now extend the treatment to the 
square matr ix, having columns given by (21): 

(26) F —m 

/ m+2p-l m+p-1 \ 
f • • • f 
m+2p-2 m+p-2 

\ f • • • f 
\ m+p-1 m 

Then (22) becomes an expression involving p X p matr ices : 

I m lo -m 
where: 

F = 
f • • • f 
2p- l p - l 

f U . "p- l 0 

Taking determinants, and simplifying, using (23): 

(27) 

or: 

det F = det H det FA —m — —0 
= ( a p ( - l ) p " 1 ) m d e t F 0 

det F —m d e t F 0 for any m . 

Clearly, the number det F0 is an extraordinary constant for any sequence which depends on 

the initial set If. £P~ , and which will be called the character is t ic . « IJo 
The characteris t ic of the Fibonacci sequence is 

1 0 1 , 

while that of the Lucas sequence Is 



22 LINEARLY RECURSIVE SEQUENCES OF INTEGERS [Feb. 

3 1 
1 2 5 , 

as is well known. 
Again, the simple remark that: 

F + = H m + n F n = H m F —m+n — —0 — —n 

plus, a comparison of ent r ies , gives: 

P - l 
(28) f — y H f 

m+n / J m , k n+p-l-k 

k=0 

which is the general reduction. It is a generalization of (16). 
EXAMPLES 

The binary case , of course,, yields the most familiar results: 

H-(? i) 
so that: 

and det IT = -a2 

From (27) in the binary case: 

(30) W m - f L + 1 - <-a2)m(f2fo - f?) 

so that, for the Q-sequence: 
Q 0 Q - Q2 = ( -a 2 ) m ( - l ) 
^ m + 2 ^ m ^m+1 2 / ' 

(3D Q2 - Q W ^ Q W -, = (-*i)m~l 

and the binary reduction becomes, referring to (28): 

(32) Q f ^ + a 0 Q J = f , . 
^ m n+1 2 ^ m - l n m+n 

The correspondence with the usual Fibonacci resul ts may be worked out in detail directly 
from these identities. 

Now, turning our attention to the ternary case (p = 3), we discover several important 
points. F i r s t , the elegant formulations of the binary case do not hold up for p = 3, or for 
higher cases . Also, symmetry of expression begins to fade with the higher sequences. 
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Clearly, most of the interesting propert ies of the Fibonacci sequence stem from its being a 
binary sequence, while a few come from its being a sequence in general. We will here give 
the ternary resul ts : 

(33) 

and 

H111 = 
' Q m + 2 
S m + i 

a 2 Q m + l + a 3 Q m 
2^m 3 ^ m - l 

a0Q ., + a0Q 2 ^ m - l 3^m-2 

/ a i H a 3 \ 
= ( 1 0 0 J 

\ 0 1 0 / 

a 3 Q m + l 
a 3 Q m - l 
a 3 Q m - 2 

so that: det II = a3 hence: 

(34) 
m+4 
m+3 

fm+2 

m+3 
fm+2 
f m+l 

m+2 
m+1 f 

m 

= (a3) 
h 

For Q-sequences in the ternary case: 

(35) 
m+4 
m+3 
m+2 

m+3 
m+2 
m+1 

Q 
Q 

m+2 
m+1 -(a3) 

And the ternary reduction: 

(36) Q f , 0 + (Q _, - - an Q )f ^ + a0 Q n f = f , ^ m n+2 ^m+1 1 rm n+1 3 ^ m - l n m+n 

NEGATIVE INDEX 

Already, we have investigated the nature of the general sequence for negative values of 
the index. A necessary and sufficient condition that a sequence be primitive and integral is 
that a2 = 1. Now, using; more recent resul ts , it is possible to look into the matter a bit p & 
more deeply, and obtain expressions relating terms of negative index with those of positive 

index. 
Were the matr ix equation B[m F0 = F to hold for negative value of the index: 

F = H " m F n 
—-m — —0 

( H m ) _ 1 I 0 

or , in particular: 
(37) H"m = (Hmf 

so that, after the indicated inversion, we may equate the entries in (37): 
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(38) H j . . . n = — minor H _,_ . . n . 
-m+p-1,3-1 d e t H

m m + p - j , i - l 

Then, letting j = 1, and recalling (8): 

H . n = Q . = ——— minor H , - . ., 
-m+p-i ,0 -m+p-i , , „ m m + p - l , i - l 

and, then, letting i = p, we have, after reference to (23): 

(39) Q = (a ( - l ) p + 1 ) ~ m minor H _, 1 
-m p m + p - l , p - l 

Then, for the general case , we need only note that from (16): 

P - l 
(i6?) f = y ^ H . f , . , 

-ni / J - m , k p - l - k 
k=0 

where: 
k 

(8f) H . = \ ^ a . Q ^ . . 

3=0 

As a footnote, we add two identities coming from the equation II If = I , where entries 
are compared, after completing the multiplication on the left member: 

(40) \ ^ H _ , . . . - H J . . I 1
= H . . 1 = s . . 

£_j m+p-k , j - l - m + p - i , k - l p - i , j - l ° i j 
k=l 

for 0 ^ 1 ^ p, 0 < j ^ p and 0 ^ k < p, and where 6... is Kronecker 's delta. 
If i = p and j = 1 in (40): 

P 
U n H p - k , 0 n - m , k - l " " 0 , 0 ' J ^ H ,_ nH ... ,_ , = H, 

k=l-

which may be rewritten: 

P - l 
(41) V Q , , , H . = 0 

JL^S ^m+p-k-1 - m , k 
k=0 



1974] LINEARLY RECURSIVE SEQUENCES OF INTEGERS 25 

Applying (39) to the binary case yields the intriguing result: 

(42) Q_ m = - ( _ a 2 r m Q m or that: J Q _ m | = | Q m | , for p = 2, 

while in the ternary case: 

(43) Q_ m = ( a 3 ) - m ( Q ^ + 1 - Q m Q m + 2 ) . for p = 3 . 

Clearly, the beauty of the expression for p = 2 does not car ry over to the situations for 
grea ter values of p. 

MATRIX SEQUENCES 

An obvious, but interesting result of (26) is the matrix expression (using entrywise 
addition): 

<44> 2>k^m-k = I F 
m k=l 

From (1), it is evident that the matr ices | F, i form an f-sequence with spectrum {a, I . 
Fur thermore , (44) m a y b e written, using the definition of F : 

k=l k=l 

however, F0 ^ 0, so that, dividing it out: 

P 

(45) XA-m"k = ° ' 
k=0 

in which case the powers of the matrix H form an f-sequence. In fact, (45) is really a r e -
sult of the Cayley-Hamilton Theorem. 

ROOTS OF THE SPECTRAL POLYNOMIAL 

Returning to the ear l ie r question of explicit determination of f and Q , we recall 
that (10) was obtained, which expressed Q in te rms of a sum of binomial coefficients. A 
different approach now will yield the so-called Binet form, which may then be compared with 
(10) for a ser ies of remarkable relationships. But first we return to (5f): 
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oo 2L, Kx 

V ^ f k k = 0 

> f. X = 
Z j k p k 
k=0 - V a , x 

£b k 

recalling that the spectral polynomial appears in the denominator. Now consider that this 
polynomial has been factored in the complex field: 

P 
(46) - > X x * = n (1 - r .x) , 

k=0 * -1 

where the roots are \ 1/r. y , a set of complex numbers, none of which are zero. Now, let 
us make the very strong assumption that the roots are distinct, so that: 

P - l k 

(47) V u k = k=Q — = Y T - i -
Z ^ k p Z-rf 1 - r . x 
k=0 n (1 - r .x) i=l 

i=l * 

where the right-hand member is a sum of partial fractions. What is needed is an expression 
for each A.. Using a geometric ser ies and (47): 

_00 P 00 

k=0 i=l j=0 

k and, equating coefficients of x * : 

(48) f
k =ZVf 

3=1 

Then, from (5') and (46): 

00 / P \ P - 1 

£ f k x k ( n (1 - r.x) ^ V " 
k=0 N1 1 I k=0 
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and so, cancelling the te rm (1 - r. x), after introducing (47): 

P p -1 

£ A n (l-.x) =J]Vk-
k=i lfK k=o 

Now, we substitute rQ (n = 1, 2, • • • , p) for 1/x, and recal l that the {r. I a re distinct: 

i^-i)Yt: AJ n ( 1 - ^ - 1 ) = >> k ( l /r n ) k 

so that, finally: 

P - 1 i i 
> h. r p 

i S ) k n 

(49) . A = S J L - - — 
n n (r - r . ) . / n l i fn 

which is exactly the expression for the A demanded for (47), and (48). In fact, now we 
may introduce into (48) the value for A. derived from (49): 

p p -1 ^m+p-l-k 

m 
- _ _ ^ r^ 

<--^v^ 
or: 

i=l k=0 n (r. - r . ) 
• - / • 3 • i 

p-1 / p r m+p- l -k 
(50) f EME -̂m . 

k=0 \ j = l n (r. - r . ) 
# i J l 

However, comparing (50) with (13) and rearranging index shows that: 

(51) Q m 

m 
r . 
3 

i=l n r . - r . ) 
-j.- 3 i 

m J 

where, of course, the r. are assumed to be distinct. This expression (51) is the general 
Binet-form for the Q-sequences. 
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Remark. We note that, at the opposite extreme, the assumption might have been made 
that r. = r for all i, so that all the spectral polynomial roots are equal: 

(52) "X)akx k = (1 " rx)P ' 
k=0 

in which case (5T) becomes: 

p-^-1
 k 

Z\ (53) Z V ^ 
k=o (i - r x > P 

and a geometric expansion, and comparison of coefficients of x gives: 

p -1 
(54) C = y ^ ( m + „ P "n1 " M y * " 3 

1 = 0 • 

P - 1 , , 
f = y ( m + p - i - M h . 
m L-d\ p - 1 / ] 

and, again, comparing this expression with (13) gives that: 

(55) CD =1 " M r m - P + 1 

EXAMPLES 

In the binary case , many of the above results produce elegant formulae. Hence, if in 
(51) the roots are 1/r^ f l / r 2 and 1 - a tx - a2x2 = (1 - r tx)( l - r2x), then: 

m m m m 
*i r 2 *i - r 2 

(56) Q = + = 
^ m vt - r2 r2 - rt rt - r2 

where rt + r2 = at and r ^ 2 = -a2. 
In the case that r t = r2 = r , we have 2r = SLt and r2 = -a2 , so that there are two 

cases: 1) r = +1, a1 = 2 and a2 = - 1 , and 2) r = - 1 , SL^ = -2 and a2 = 1. And, in 
either case: 

(m \ m - 1 m - 1 

1Jr = mr 

(57) Q 
^ m 

where: 
Q ^ = 2rQ _L1 - Q ^m+2 ^m+1 ^ m 

Evidently, by factoring and dividing in (56), and then allowing rA to approach r 2 : 
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m - 1 
_ ^ m - l - k k m - 1 .£ 

Qm - 2^ r i r2 = m r l f r i = r2 ' 
k=0 

hence, all three cases may be said to be derived from (56). 
Now, foregoing the tedious calculation, we give the ternary results (p = 3): 

m m m 
r i r2 r3 

Q m ~ {rt - r 2 ) ( r 1 - r 3 ) + (r2 - r 3)(r2 - r t ) + (r3 - r t ) ( r 3 - r 2 ) 
where 

1 - a tx - a2x2 - a3x3 = (1 - rjxMl - r2x)(l - r3x) . 

If two roots are equal, then r2 = r3 say, and: 

m m m - 1 
rt - r2 mr2 

(59) Q = — , 
m / \o 

(r-L - r2r rt - r2 
where 

1 - SLtx - a2x2 - a3x3 = (1 - rjxMl - r2x)2 

m-2 

And, if r 1 = r2 = r3 = r , then: 

(60) Q = - m(m - l ) r 
v ^ m 2 

where 

Q 0 = 3rQ ^ - 3Q ^ + rQ and r = +1 or - 1 . 
^m+3 ^m+2 ^m+1 ^ m 

Once again, although now there are an infinite number of cases depending on the nature of the 
roots, it can foe seen that (59) and (60) can be derived from (58) directly, using in part the 
identity: 

m m m m - 1 

G^ - r 2 ) 2 ^ rt - r2 

In summary, then, we can, with minor adjustments in view of multiple roots of the spectral 
polynomial, consider that the form (51) actually is the expression for Q in terms of the 
roots of the spectral polynomial. On the other hand, (10) expresses Q in te rms of the co-
efficients of the spectral polynomial. That this is a source of a multitude of fascinating prob-
lems is left to the imagination of the reader , as well as to his leisure. 
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PART 3. SYMMETRIC FUNCTIONS 

By attacking the entire problem from another point of view, it will be possible to derive 
a generalization of the Lucas sequence, and thence derive a set of remarkable identities in-
volved with this generalization s imilar to the usual Fibonacci-Luc as result that F L = F~ . 

Consider, f irst , a set of complex numbers | r . 1 , and a defining relation: 

k _ , • t • 
(61) n (x - r . ) = > ( - D ' s . x * - 1 . 

i = 1 J La i 
3 x k=0 

The coefficients S. are clearly the elementary symmetric functions of { r . | . In particular: 

S0 = 1, in any case , 

SA = r t + r2 + r3 + • • • + r R , 

(62) S2 = rt r2 + rt r3 + • • • , 

Sk = r 1 r 2 r 3 • • • rfe, and 

S = 0, for n > k . 
n • 

By substituting r into (61): 

k 
k r m = 2>'-V£;' 

i = l 

n-k or , after multiplying by r : 

i=l 

Suppose that t is any linear combination of the { r . }, so that from (63), it is clear that: 

k 

t =y^(-l)i"1S.t . . n / ^ I n-i t„ 
i=l 

In which case , if we further define a. = (-1)1 S., we have (letting k = p): 
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P 
(64) t = V V t . . 

n ' * i n - 1 

i=l 

Hence, from (1), a sequence of l inear combinations of n powers of r . is actually an f-
sequence. Further , the Q-sequence defined by (51) is a specific case of l inear combination. 

It seems reasonable to investigate the propert ies of the simplest t-sequence, namely, 
the simplest l inear combination of n powers of r . , which will be called a T-sequence: 

(65) Tn=Er" 
5=1 

in which case: 

T0 = P 

Tj = aj 

T2 = 4 + 2a2 , 
and, in general , 
( 6 6 ) • T k = a i T k - l + a 2 T k - 2 + • • • + a k - l T l + k a k for k ^ P • 

Remark. Since a. = (-1) " S,, then, in part icular , ao = - 1 , as was defined ear l ier . 
In addition, it must be remarked that the a. defined just before (64) must be integers, in 
keeping with the definitions made in the first part of this paper guaranteeing that the 
f-sequences be sequences of integers. 

From (7) and (66), it can be seen that h k = -ak(p - k) for k £ p for any T-sequence. 
Immediately, (5f) becomes 

P - l k 
J2 ak(p - k)x 

(67) ZTkx k k=0 

k=0 V a, x 

and, if s(x) denotes the spectral polynomial 

P 
k a. x k 

k=0 

(68) y ^ T k x k = P " x ' s!(x)/s(x) . 
k=0 
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Already9 from (9): 

J ^ Q k x k = x P "Vs(x) 
k=0 

so that clearly, we have: 

(69) ^SI^V^^SV" 
k=0 J k=0 

in the derivation of which, a bit of the tedious rearrangement has been passed over. 
In addition, noting again that h , = h, = -a, (p - k) and substituting into (13): 

p -1 
T _,_-,= - V ^ a . (p - k)Q . m - p + l ' * k m-k 

k=0 

P 
p ) a. Q 1 + 7 a. kQ , F / J k m-k / ^ k in~k 

k=0 k=0 

but the first term on the right is exactly zero by (1); so: 

T ^ = V ^ k a . _ Q . m-p+1 / J k ^ m - k 
k=0 

(70) T = V ^ k a . Q _,_ 1 . 
m / / k^m+p-1-k 

k=l 

Inspecting (70) and looking at various cases leads to the remark that, in fact, (70) is exactly 
the generalizati 
Lucas identity. 
the generalization of L = F , - , + F n = F + 2 F -, which is a familiar Fibonacci-& m m+1 m - 1 m m - 1 

EXAMPLES 

What follows now is a rather long discussion of the binary case for T-sequences. The 
most fascinating results occur when p = 2, so that a presentation of this situation is reward-
ing. F i rs t , in the binary case: 

T = rt + r2 , where r^ - a4 rj - a2 = 0, i = 1, 2 ; 
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or, if rt = r2 = r: 

(71) 

In either case: 

Q T n n 

T = 2r n 

n n 
r l - r2 
Ti~- ~*i 

\{T1 + r2 ) 

so that: 

(72) 

Then, from (70): 

or: 

(73) 

2n 2n 
r i " r2 
_ _ _ 

Q T n n Q 2n 

ajQ + 2a2( 

T = Q j . i + a 2 Q i • n m+1 ^ m-1 

The symmetry of (72) and (73) reveals the underlying charm of the Lucas sequence, which, 

of course, carries over to any binary T-sequence. Continuing, using (73) and (42): 

T = Q _,, + aQQ 
-m -m+1 2 -Hi-1 

or, as in (42): 

(74) 

Applying (73), we have: 

(75) 

, v-m+1^ / v-m-l„ 
-(-a2) Q ^ i - a j t - a j ) Q m + 1 

(-a2) (a, 2^m- l + Q m + r 

( - a 2 ) " m T r 

T , n + aQT n m+1 2 m-1 (aj + 4a2) 

while the characteristic expression (27) is: 

(76) T _,0T - T2 _L1 
v ' m+2 m m+1 

= (-a2)m(a^ + 4a2) . 

But the general reduction (28) provides the most elegant formulae, both for Q- and 

T-sequences: 

(77) 

and, taking (74) into account: 

(78) 

Q T o.i + aoQ J = T ^ 
^m n+1 2^m-l n m+n 

^m^n+1 2 ^ m - l ^ n ^m+n 5 

T = (-a2) (Q T - Q T ^ ) 
m-n Ll v^m+l n ^m n+1 

Q = (-a2) (Q M Q - Q Q , - ) 
^m-n L' ^ m + l ^ n ^m^n+1 
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so that, adding (77) and (78): 
T ^ + (-a 2 ) n T = T T 

m+n L m-n n m 
( 7 9 ) Q ^ + (-a2)nQ = T Q 

^m+n L' ^ m - n n ^ m 
or , subtracting: 

T ^ - ( -a 2 ) n T = Q Q (a? + 4a2) cf. (75) 
m+n L m-n ^n ^ m 1 L 

( 8 0 ) Q ^ - (-a2)nQ = Q T 
^m+n L ^ m - n ^n m 

and rearranging index in (79) and (80): 

< W » n - k - ( T 2 n - ( - a 2 ) n - k T 2 k ) / ( a ? + 4 a 2 ) 

Q n + k T n - k = %n + ^"Sk 

< 8 1 ) Tn+kVk = %n - ^ ^ \ k 

Tn+kT„-k = T2„ + ^ ) n _ k T
2 k 

and, finally: 

(82) Q9 Q,. = Q* - Q* . = T n + k " T n - k 

2 n 2 k n + k n " k (a2
1 + 4a2) 

Remark. The ternary and higher cases yield no such results; that i s , the symmetry 
and conciseness do not ca r ry over for p > 2 . Then, it is clear , the Lucas-Fibonacci re la -
tionship is based almost entirely on the character of the two sequences as binary sequences. 

PART 4. FINITE SUMS 

A number of Fibonacci identities are concerned with the formulation in terms of the 
Fibonacci sequence of the sum of a certain se r ies of te rms of the sequence. For example, 
the simplest case: 

F k = V 2 - 1 • 
k=0 

We now seek to generalize this result . Recalling ear l ie r definitions and theorems: 

(i) f a. = y ^ u x , 
m+p / ^ k m+p-k 

k=l 

(6) h . = - 7 a.f M . 
m , k Z—4 3 m+k-j 

3=0 



1974] LINEARLY RECURSIVE SEQUENCES OF INTEGERS 

and we define: a0 = -1 and hQ k = h, , so that: 

35 

(5.) ^ ^ k 

p - 1 1 

k=0 K 

P k 
k=0 J2 a.x 

But the initial set {f.} may be chosen arbi t rar i ly , so it is possible to choose for initials 
the set { f m + i } where i = 0, 1, 2, • • • , p = 1. In that case , (5f) becomes: 

p-^-1
 k 

(83) X ) f - " - x k ~ k=° 
E n i x 

m+k p k 
k=0 V* a, x 

and rearranging the left member: 

P - l , 
oo - V1 h , x 

E i r^n m , k 

f k-m _ k=0 
k X P k 

k=m J2 \ x 
or , multiplying by x : 

P " 1 m+k 
h m k x 

(84) E f k x k = k=° P k 
k=m V a. x 

&b k 

Then, by a simple substitution: 

2 > k • 
p - 1 • > * 
— n i X 

k k=0 
oo ~ E n

n k
x 

k=n E akx 

and, subtracting these two expressions: 
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p - 1 . 

(85) £ fk 
n - 1 . k-o 

k x = P k 
_ a i ^ x 

=0 
i > a i x 

k=m Z-u k 

Letting x = 1, and assuming that 2 a, f 0: 

p ^ 1 

n-l J\ (h . - h . ) 
(86) > . f, = 

~f̂  n ,k m , k k=0 
k p 

k=m J2 a, 

Remark. Evidently, the sum in the left member of (86) is finite, so that in the case 
that 2 a, = 0, the numerator on the right must be divisible by the denominator. 

In the event that p = 2, we have the simpler expression: 

£ l i (f - f ) + a2 (f - - f - ) 
<*7\ \ ^ f - n m ' 2 V n - l m - 1 
( 8 7 ) Z*t fk - 1 + a4 + a2 

k=n 
and 

n - l 
(83) ^ Q k -

k=l 

Q + a 0 Q n - 1 ^n 2 ^ n - l 
at + a2 - 1 

which reduces to the Fibonacci expression when a1 = a2 = 1. 

SUMMARY 

At the outset, it was proposed to find a generalization from which all the familiar r e -
sults for Fibonacci-Lucas sequences might be deduced, in addition to which a consistent no-
tation might be developed, and finally, that the sources of the peculiarity of the Fibonacci-
Lucas sequences might be found. It is hoped that such proposals are worked out in the course 
of the paper. All that remains to be said concerns the sources of peculiarity which is the 
bulk of the charm surrounding the Fibonacci-Lucas sequences. Of course, some of these 
propert ies stem from the very nature of a recursive sequence of integers (such as (5) and 
(27)); while other propert ies stem from the Q-sequence in part icular (for example, (10) and 
(51)); while others still come from those formulae which assume different forms when aA = 
a2 = 1. Actually, it is quite extraordinary how many of the propert ies of the Fibonacci-Lucas 
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sequences a re shared by a l a rger c lass of sequences. 

REFERENCES 

1. James A. Jeske, "Linear Recurrence Relations, Par t I , " Fibonacci Quarterly, Vol. 1, 
No. 2 (April 1963), pp. 69-74; Pa r t II, Vol. 1, No. 4 (Dec. 1963), pp. 35-40; Par t III, 
Vol. 2, No. 3 (Oct. 1964), pp. 197-202. 

2. Ken Siler, " Fibonacci Summations," Fibonacci Quarterly, Vol. 1, No. 3 (Oct. 1963), pp. 
67-70. 

3. E. P. Miles, J r . , "Generalized Fibonacci Numbers and Associated Mat r i ces , " Amer. 
Math. Monthly, 67 (1960), p. 745. 

4. R. A. Rosenbaum, "An Application of Matrices to Linear Recursion Relations, " Amer. 
Math. Monthly, 66 (1959), p. 792 (note). 

5. David Zeitlin, "On Summation Formulae for Fibonacci and Lucas Numbers , " Fibonacci 
Quarterly, Vol. 2, No. 2 (Apr. 1964), pp. 105-107. 

6. David Zeitlin, "Power Identities for Sequences defined by W 9 = dW - - cW , " Fib-
onacci Quarterly, Vol. 3, No. 4 (Dec. 1965), pp. 241-256. 

7. V. C. Harr i s and Carolyn C. Styles, "A Generalization of Fibonacci Numbers," Fibon-
acci Quarterly, Vol. 2, No. 4 (Dec. 1964), pp. 277-289. 

8. I. I. Kolodner, "On a Generating Function Associated with Generalized Fibonacci Se-
quences ," Ilbo£a£C£_Qu£rter2y, Vol. 3, No. 4 (Dec. 1965), pp. 272-278. 

9. M. E. Waddill and Louis Sacks, "Another Generalized Fibonacci Sequence," Fibonacci 
Quarterly, Vol. 5, No. 3 (Oct. 1967), pp. 209-222. 

10. C. H. King, "Conjugate Generalized Fibonacci Sequences," Fibonacci Quarterly, Vol. 6, 
No. 1 (Feb. 1968), pp. 46-49. 

11. T. W. Cusick, "On a Certain Integer Associated with a Generalized Fibonacci Sequence," 
Fibonacci Quarterly, Vol. 6, No. 2 (Apr. 1968), pp. 117-126. 

12,. Leon Bernstein and Helmut Hasse, "Explicit Determination of the Per ron Matrices in 
Periodic Algorithms of the Perron-Jacobi Type with Applications to Generalized Fibon-
acci Numbers with Time Impulse," Fibonacci Quarterly, Vol. 7, No. 4 (Nov. 1969), pp. 
394-436. 

13., Hyman Gabai, "Generalized Fibonacci k-Sequences," Fibonacci Quarterly, Vol. 8, No. 
1 (Feb. 1970), pp. 31-38. 

14. V. E. Hoggatt, J r . , Fibonacci and Lucas Numbers, Houghton Mifflin, 1969. 


