CERTAIN CONGRUENCE PROPERTIES (MODULO 100) OF FIBONACCI NUMBERS

MICHAEL R. TURNER
Regis College, Denver, Colorado 80221

Remark. It was originally observed by the author that if p is a prime ≥ 5, then $\mathrm{F}_{\mathrm{p}^{2}} \equiv \mathrm{p}^{2}(\bmod 100) . \quad$ Further study led to this theorem which characterizes those Fibonacci numbers which terminate in the same last two digits as their indices. The original observation is proved as a corollary to the theorem.

Theorem. $\quad \mathrm{F}_{\mathrm{n}} \equiv \mathrm{n}(\bmod 100)$ if and only if

$$
\mathrm{n} \equiv 1,5,25,29,41 \text {, or } 49(\bmod 60) \text { or } \mathrm{n} \equiv 0(\bmod 300) .
$$

Proof. From [1], we have the well known formula

$$
\begin{equation*}
\mathrm{F}_{\mathrm{n}}=2^{1-\mathrm{n}}\left[\binom{\mathrm{n}}{1}+5\binom{\mathrm{n}}{3}+5^{2}\binom{\mathrm{n}}{5}+\cdots+5^{\frac{\mathrm{m}-1}{2}}\binom{\mathrm{n}}{\mathrm{~m}}\right] \tag{1}
\end{equation*}
$$

where $\mathrm{m}=\mathrm{n}$ if n is odd, and $\mathrm{m}=\mathrm{n}-1$ if n is even.
Lemma 1. $\quad \mathrm{F}_{60 \mathrm{k}} \equiv 20 \mathrm{k}(\bmod 100)$.
Proof. Observe that (1) implies

$$
\begin{equation*}
2^{\mathrm{n}-1} \mathrm{~F}_{\mathrm{n}} \equiv \mathrm{n}+5 \frac{\mathrm{n}(\mathrm{n}-1)(\mathrm{n}-2)}{6} \quad(\bmod 25) \tag{2}
\end{equation*}
$$

From [1], we have for $n, m \geq 2,(n, m)=d$ implies that $\left(F_{n}, F_{m}\right)=F_{d}$. Now (2) implies $2^{60 \mathrm{k}-1} \mathrm{~F}_{60 \mathrm{k}} \equiv 60 \mathrm{k}+50 \mathrm{k}(60 \mathrm{k}-1)(60 \mathrm{k}-2)(\bmod 25)$, which reduces to $2^{60 \mathrm{k}-1} \mathrm{~F}_{60 \mathrm{k}}$ $\equiv 10 \mathrm{k}(\bmod 25)$. Since $2^{20} \equiv 1(\bmod 25)$, we get $\mathrm{F}_{60 \mathrm{k}} \equiv 20 \mathrm{k}(\bmod 25)$. Since 6 divides 60 k , it follows that F_{6} divides $\mathrm{F}_{60 \mathrm{k}}$. Now $\mathrm{F}_{6}=8$, so $\mathrm{F}_{60 \mathrm{k}} \equiv 0(\bmod 4)$. Combining this with $\mathrm{F}_{60 \mathrm{k}} \equiv 20 \mathrm{k}(\bmod 25)$, we get $\mathrm{F}_{60 \mathrm{k}} \equiv 20 \mathrm{k}(\bmod 100)$, which proves Lemma 1.

We now prove one of the congruences in the theorem.

$$
\begin{equation*}
\mathrm{n} \equiv 1(\bmod 60) \quad \text { implies } \quad \mathrm{F}_{\mathrm{n}} \equiv \mathrm{n}(\bmod 100) \tag{3}
\end{equation*}
$$

Proof. Clearly $\mathrm{n}=1$ implies $\mathrm{F}_{\mathrm{n}} \equiv \mathrm{n}(\bmod 100)$. Assume that for all $\mathrm{k}<\mathrm{N}, \mathrm{n}=$ $60 \mathrm{k}+1$ implies $\mathrm{F}_{\mathrm{n}} \equiv \mathrm{n}(\bmod 100)$. Now if $\mathrm{n}=60 \mathrm{~N}+1$ for even N , then $\mathrm{n}=120 \mathrm{k}+1$ for $k=N / 2<N$.

From [2], we have the following identity, which will prove extremely useful in what follows.

$$
\begin{equation*}
F_{n+m+1}=F_{n} F_{m}+F_{n+1} F_{m+1} \tag{4}
\end{equation*}
$$

In particular,

$$
\mathrm{F}_{120 \mathrm{k}+1}=\mathrm{F}_{60 \mathrm{k}}^{2}+\mathrm{F}_{60 \mathrm{k}+1}^{2}
$$

Using Lemma 1 and induction hypotheses, we get

$$
\mathrm{F}_{\mathrm{n}}=\mathrm{F}_{60 \mathrm{k}+1}^{2}+\mathrm{F}_{60 \mathrm{k}}^{2} \equiv(60 \mathrm{k}+1)^{2}+(20 \mathrm{k})^{2} \equiv 120 \mathrm{k}+1=\mathrm{n}(\bmod 100)
$$

If $\mathrm{n}=60 \mathrm{~N}+1$ for odd N , then $\mathrm{n}=120 \mathrm{k}+60+1$ for $\mathrm{k}=(\mathrm{N}-1) / 2$. Then $\mathrm{F}_{\mathrm{n}}=\mathrm{F}_{120 \mathrm{k}} \mathrm{F}_{60}+\mathrm{F}_{120 \mathrm{k}+1} \mathrm{~F}_{61}$. Inspection of any large table such as [3] verifies that $\mathrm{F}_{61} \equiv$ $61(\bmod 100)$. Thus, by Lemma 1 and induction hypothesis, we have

$$
\mathrm{F}_{\mathrm{n}} \equiv 40 \mathrm{k} \cdot 20+(120 \mathrm{k}+1) \cdot 61 \equiv 120 \mathrm{k}+60+1 \equiv \mathrm{n}(\bmod 100)
$$

This proves the congruence.
Lemma 2. $\quad \mathrm{F}_{60 \mathrm{k}+\mathrm{n}} \equiv 20 \mathrm{k} \cdot \mathrm{F}_{\mathrm{n}-1}+(60 \mathrm{k}+1) \cdot \mathrm{F}_{\mathrm{n}}(\bmod 100)$.
Proof. Lemma 2 follows from (3) and Lemma 1. The remainder of the proof is divided into five cases.

Case 1. $\mathrm{n} \equiv 1(\bmod 5)$.
Assume $\mathrm{F}_{\mathrm{n}} \equiv \mathrm{n}(\bmod 100)$. Then $\mathrm{F}_{\mathrm{n}} \equiv \mathrm{n}(\bmod 4)$ and $\mathrm{F}_{\mathrm{n}} \equiv \mathrm{n}(\bmod 25)$. Now (2) implies $2^{\mathrm{n}-1} \mathrm{~F}_{\mathrm{n}} \equiv \mathrm{n}(\bmod 25)$, since

$$
5 \frac{\mathrm{n}(\mathrm{n}-1)(\mathrm{n}-2)}{6} \equiv 0(\bmod 25)
$$

Also, $(5, \mathrm{n})=1$ and $\mathrm{F}_{\mathrm{n}} \equiv \mathrm{n}(\bmod 100)$, so we may cancel the n and F_{n} to get $2^{\mathrm{n}-1} \equiv 1$ $(\bmod 25)$. Since 2 belongs to the exponent $20(\bmod 25)$, it follows that $n \equiv 1(\bmod 20)$. Thus $\mathrm{n} \equiv 1(\bmod 4)$. But $\mathrm{F}_{\mathrm{n}} \equiv \mathrm{n} \equiv 1(\bmod 4)$, so F_{n} must be odd. But F_{n} is even if and only if $\mathrm{n} \equiv 0(\bmod 3)$, so $\mathrm{n} \equiv 1$ or $2(\bmod 3)$. Combining results,
$\left.\begin{array}{l}\mathrm{n} \equiv 1 \quad(\bmod 3) \\ \mathrm{n} \equiv 1 \quad(\bmod 20)\end{array}\right\} \mathrm{n} \equiv 1(\bmod 60) \quad$ or $\left.\left.\quad \begin{array}{l}\mathrm{n} \equiv 2(\bmod 3) \\ \mathrm{n} \equiv 1\end{array}\right\} \mathrm{mod} 20\right) ~ \mathrm{n} \equiv 41(\bmod 60)$.
Now suppose that $\mathrm{n} \equiv 41(\bmod 60)$. Let $\mathrm{n}=60 \mathrm{k}+41$. By Lemma 2,

$$
\mathrm{F}_{\mathrm{n}} \equiv 20 \mathrm{k} \cdot \mathrm{~F}_{40}+(60 \mathrm{k}+1) \mathrm{F}_{41}(\bmod 100)
$$

By inspection of tables, we have $\mathrm{F}_{40} \equiv 55(\bmod 100)$ and $\mathrm{F}_{41} \equiv 41(\bmod 100)$. Therefore, we have

$$
\mathrm{F}_{\mathrm{n}} \equiv(60 \mathrm{k}+41)+20 \mathrm{k} \cdot 55 \equiv 60 \mathrm{k}+41 \equiv \mathrm{n}(\bmod 100) .
$$

This result, along with (3), completes the proof of Case 1.

Case 2. $n \equiv 2(\bmod 5)$.
This case is impossible, for as in Case 1 , it follows that $\mathrm{n} \equiv 1(\bmod 20)$, a contradiction.

Case 3. $n \equiv 3(\bmod 5)$.
Let $\mathrm{n}=3+5 \mathrm{k}$. Then from (2),

$$
2^{2+5 \mathrm{k}} \mathrm{~F}_{\mathrm{n}} \equiv \mathrm{n}+\mathrm{n} \cdot \frac{5(2+5 \mathrm{k})(1+5 \mathrm{k})}{6} \quad(\bmod 25)
$$

Assuming $F_{n} \equiv n(\bmod 100)$, we may cancel the F_{n} and $n^{\prime} s$, since $(n, 25)=1$, obtaining $3 \cdot 2^{3+5 k^{n}} \equiv 6+5 \cdot 2 \cdot 1(\bmod 25)$. Thus $2^{5 k+6} \equiv 1^{n}(\bmod 25)$. But this congruence implies $5 \mathrm{k}+6 \equiv 0(\bmod 20)$, or $5 \mathrm{k} \equiv 14(\bmod 20)$. This congruence is not possible, so case 3 is impossible.

Case 4. $\mathrm{n} \equiv 4(\bmod 5)$.
Assume $\mathrm{F}_{\mathrm{n}} \equiv \mathrm{n}(\bmod 100)$. Let $\mathrm{n}=4+5 \mathrm{k}$. Then $3 \cdot 2^{4+5 \mathrm{k}} \equiv 6+5 \cdot 3 \cdot 2(\bmod 25)$, so $2^{5 \mathrm{k}-5} \equiv 1(\bmod 25)$, and $5 \mathrm{k} \equiv 5(\bmod 20)$. Thus $\mathrm{n}=5 \mathrm{k}+4 \equiv 9(\bmod 20)$. F_{n} and n are therefore odd, so $n \equiv 1$ or $2(\bmod 3)$. Combining results,

$$
\left.\left.\begin{array}{rl}
\mathrm{n} \equiv 1 & (\bmod 3) \\
\mathrm{n} \equiv 9 & \equiv \bmod 20)
\end{array}\right\} \mathrm{n} \equiv 49(\bmod 60) \quad \text { or } \quad \begin{array}{l}
\mathrm{n} \equiv 2 \\
\mathrm{n} \equiv 9 \\
\equiv \bmod 3) \\
(\bmod 20)
\end{array}\right\} \mathrm{n} \equiv 29(\bmod 60)
$$

Now suppose that $n \equiv 29(\bmod 60)$. Let $n=29+60 k$. By Lemma 2,

$$
F_{\mathrm{n}} \equiv \mathrm{~F}_{60 \mathrm{k}} \mathrm{~F}_{28}+\mathrm{F}_{60 \mathrm{k}+1} \mathrm{~F}_{29}(\bmod 100)
$$

By inspection of tables, $\mathrm{F}_{28} \equiv 11(\bmod 100)$, and $\mathrm{F}_{29} \equiv 29(\bmod 100)$. Thus by Lemma 1, we have

$$
\mathrm{F}_{\mathrm{n}} \equiv 20 \mathrm{k} \cdot 11+(60 \mathrm{k}+1) \cdot 29 \equiv 60 \mathrm{k}+29 \equiv \mathrm{n}(\bmod 100)
$$

Suppose $\mathrm{n} \equiv 49(\bmod 60)$. Let $\mathrm{n}=49+60 \mathrm{k}$. By similar reasoning,

$$
\mathrm{F}_{\mathrm{n}} \equiv 20 \mathrm{k} \cdot \mathrm{~F}_{48}+(60 \mathrm{k}+1) \mathrm{F}_{49} \equiv 20 \mathrm{k} \cdot 76+(60 \mathrm{k}+1) \cdot 49 \equiv 60 \mathrm{k}+49 \equiv \mathrm{n}(\bmod 100)
$$

This result completes the proof of Case 4.
Case 5. $n \equiv 0(\bmod 5)$.
Let $\mathrm{n}=5^{\mathrm{S}} \mathrm{k}$, where $\mathrm{s} \geq 1$, and $(5, \mathrm{k})=1$. We shall consider in order the possibilities $n \equiv 0,1,2$, and $3(\bmod 4)$. Assume $F_{n} \equiv n(\bmod 100)$. If $n \equiv 0(\bmod 4)$, and $\mathrm{s}=1$, then $\mathrm{n}=5 \mathrm{k}$, where $(5, \mathrm{k})=1$. Thus we get $2^{\mathrm{n}-1} \mathrm{~F}_{\mathrm{n}} \equiv \mathrm{n}(\bmod 25)$ from (2). Now $\mathrm{F}_{\mathrm{n}} \equiv \mathrm{n} \equiv 5 \mathrm{k}(\bmod 25)$ implies $2^{\mathrm{n}-1} .5 \equiv 5(\bmod 25)$, so $\mathrm{n} \equiv 1(\bmod 4)$. But in this case, the last result is impossible, so it follows that $s \geq 2$. Also, since F_{n} must be even, we have $n \equiv 0(\bmod 3)$. Finally, $n \equiv 0\left(\bmod 5^{S}\right)$ implies $n \equiv 0(\bmod 25)$. Combining, we have

Let us suppose that $n \equiv 0(\bmod 4)$; we have F_{n} odd, so there are two combinations:

If $n \equiv 2(\bmod 4)$, we have

$$
\left.\begin{array}{rl}
\mathrm{n} & \equiv 0 \\
\mathrm{n} & (\bmod 3) \\
\mathrm{n} & \equiv 0
\end{array} \quad(\bmod 4), \mathrm{mod} 5\right)\{\mathrm{n} \equiv 30 \quad(\bmod 60)
$$

Let $\mathrm{n}=30+60 \mathrm{k}$. By Lemmas 1 and 2 ,

$$
\mathrm{F}_{\mathrm{n}}=\mathrm{F}_{60 \mathrm{k}+30} \equiv 20 \mathrm{kF}_{29}+(60 \mathrm{k}+1) \mathrm{F}_{30}(\bmod 100)
$$

But this reduces to $\mathrm{F}_{\mathrm{n}} \equiv 20 \mathrm{k}+40(\bmod 100)$. Now $\mathrm{F}_{\mathrm{n}} \equiv \mathrm{n}=30+60 \mathrm{k}(\bmod 100)$ implies $20 \mathrm{k}+40 \equiv 60 \mathrm{k}+30(\bmod 100)$, or $40 \mathrm{k} \equiv 10(\bmod 100)$, which is impossible. If $\mathrm{n} \equiv 3$ $(\bmod 4)$, we get two combinations:
$n \equiv 1(\bmod 3)$

The first congruence results in

$$
\mathrm{F}_{\mathrm{n}}=\mathrm{F}_{55+60 \mathrm{k}} \equiv 40 \mathrm{k}+45(\bmod 100)
$$

and $\mathrm{F}_{\mathrm{n}} \equiv \mathrm{n}=55+60 \mathrm{k}$ implies $20 \mathrm{k} \equiv 90(\bmod 100)$, which is impossible. The second congruence results in

$$
\mathrm{F}_{\mathrm{n}}=\mathrm{F}_{35+60 \mathrm{k}} \equiv 40 \mathrm{k}+65(\bmod 100)
$$

and $\mathrm{F}_{\mathrm{n}} \equiv \mathrm{n}=35+60 \mathrm{k}$ implies $20 \mathrm{k} \equiv 30(\bmod 100)$, which is also impossible.
Suppose $\mathrm{n} \equiv 5(\bmod 60)$. Let $\mathrm{n}=5+60 \mathrm{k}$. Then $\mathrm{F}_{\mathrm{n}}=\mathrm{F}_{5+60 \mathrm{k}}$, so

$$
\mathrm{F}_{\mathrm{n}} \equiv 20 \mathrm{k} \cdot \mathrm{~F}_{4}+(60 \mathrm{k}+1) \cdot \mathrm{F}_{5} \equiv 60 \mathrm{k}+5 \equiv \mathrm{n}(\bmod 100)
$$

Suppose $\mathrm{n} \equiv 25(\bmod 60)$. Let $\mathrm{n}=25+60 \mathrm{k}$. Then

$$
\mathrm{F}_{\mathrm{n}}=\mathrm{F}_{25}+60 \mathrm{k},
$$

so

$$
\mathrm{F}_{\mathrm{n}} \equiv 20 \mathrm{k} \cdot \mathrm{~F}_{24}+(60 \mathrm{k}+1) \cdot \mathrm{F}_{25} \equiv 60 \mathrm{k}+25 \equiv \mathrm{n}(\bmod 100) .
$$

Finally, if $\mathrm{n} \equiv 0(\bmod 300)$, then 300 divides n, so F_{300} divides F_{n}. By Lemma 1, $\mathrm{F}_{300} \equiv 0(\bmod 100)$, and thus $\mathrm{F}_{\mathrm{n}} \equiv 0 \equiv \mathrm{n}(\bmod 100)$.

This result completes the proof of the theorem.
Corollary. If p is a prime ≥ 5, then $\mathrm{F}_{\mathrm{p}^{2}} \equiv \mathrm{p}^{2}(\bmod 100)$.
Proof. By the theorem, $\mathrm{F}_{5} \equiv 5(\bmod 100)$. If p is a prime $>_{5}$, then

$$
\mathrm{p} \equiv 1,3,7,9,11,13,17, \text { or } 19(\bmod 20) .
$$

Thus $\mathrm{p}^{2} \equiv 1$ or $9(\bmod 20)$. Since $\mathrm{p}^{2} \equiv 1(\bmod 3)$, it follows that $\mathrm{p}^{2} \equiv 1$ or $49(\bmod$ 60).

RE FERENCES

1. G. H. Hardy and E. H. Wright, An Introduction to the Theory of Numbers,
2. S. L. Basin and V. E. Hoggatt, Jr., "A Primer on the Fibonacci Sequence, Part I," Fibonacci Quarterly, Vol. 1, No. 1 (Feb. 1963), pp. 65-72.
3. Dov Jarden, Recurring Sequences, Riveon Lematematika, Jerusalem, Is rael, 1958.

