CERTAIN CONGRUENCE PROPERTIES (MODULO 100) OF FIBONACCI NUMBERS

MICHAEL R. TURNER Regis College, Denver, Colorado 80221

<u>Remark</u>. It was originally observed by the author that if p is a prime ≥ 5 , then $\mathbb{F}_{p^2} \equiv p^2 \pmod{100}$. Further study led to this theorem which characterizes those Fibonacci numbers which terminate in the same last two digits as their indices. The original observation is proved as a corollary to the theorem.

<u>Theorem</u>. $F_n \equiv n \pmod{100}$ if and only if

 $n \equiv 1, 5, 25, 29, 41$, or 49 (mod 60) or $n \equiv 0 \pmod{300}$.

Proof. From [1], we have the well known formula

(1)
$$F_n = 2^{1-n} \left[\binom{n}{1} + 5\binom{n}{3} + 5^2\binom{n}{5} + \dots + 5^{\frac{m-1}{2}}\binom{n}{m} \right] ,$$

where m = n if n is odd, and m = n - 1 if n is even.

<u>Lemma 1</u>. $F_{60k} \equiv 20k \pmod{100}$. Proof. Observe that (1) implies

(2)
$$2^{n-1}F_n \equiv n+5 \frac{n(n-1)(n-2)}{6} \pmod{25}$$
.

From [1], we have for n, $m \ge 2$, (n,m) = d implies that $(F_n, F_m) = F_d$. Now (2) implies $2^{60k-1}F_{60k} \equiv 60k + 50k (60k - 1)(60k - 2) \pmod{25}$, which reduces to $2^{60k-1}F_{60k} \equiv 10k \pmod{25}$. Since $2^{20} \equiv 1 \pmod{25}$, we get $F_{60k} \equiv 20k \pmod{25}$. Since 6 divides 60k, it follows that F_6 divides F_{60k} . Now $F_6 = 8$, so $F_{60k} \equiv 0 \pmod{4}$. Combining this with $F_{60k} \equiv 20k \pmod{25}$, we get $F_{60k} \equiv 20k \pmod{4}$. Combining 1.

We now prove one of the congruences in the theorem.

(3)
$$n \equiv 1 \pmod{60}$$
 implies $F_n \equiv n \pmod{100}$

<u>Proof.</u> Clearly $n \equiv 1$ implies $F_n \equiv n \pmod{100}$. Assume that for all $k \leq N$, $n \equiv 60k + 1$ implies $F_n \equiv n \pmod{100}$. Now if $n \equiv 60N + 1$ for <u>even</u> N, then $n \equiv 120k + 1$ for $k \equiv N/2 \leq N$.

From [2], we have the following identity, which will prove extremely useful in what follows.

(4) $F_{n+m+1} = F_n F_m + F_{n+1} F_{m+1}$.

In particular,

88

$$F_{120k+1} = F_{60k}^2 + F_{60k+1}^2$$

Using Lemma 1 and induction hypotheses, we get

$$F_n = F_{60k+1}^2 + F_{60k}^2 \equiv (60k + 1)^2 + (20k)^2 \equiv 120k + 1 = n \pmod{100}$$
.

If n = 60N + 1 for <u>odd</u> N, then n = 120k + 60 + 1 for k = (N - 1)/2. Then $F_n = F_{120k}F_{60} + F_{120k+1}F_{61}$. Inspection of any large table such as [3] verifies that $F_{61} =$ 61 (mod 100). Thus, by Lemma 1 and induction hypothesis, we have

$$F_n \equiv 40k \cdot 20 + (120k + 1) \cdot 61 \equiv 120k + 60 + 1 \equiv n \pmod{100}$$
.

This proves the congruence.

into five cases.

Case 1. $n \equiv 1 \pmod{5}$.

Assume $F_n \equiv n \pmod{100}$. Then $F_n \equiv n \pmod{4}$ and $F_n \equiv n \pmod{25}$. Now (2) implies $2^{n-1}F_n \equiv n \pmod{25}$, since

$$5 \frac{n(n - 1)(n - 2)}{6} \equiv 0 \pmod{25}.$$

Also, (5,n) = 1 and $F_n \equiv n \pmod{100}$, so we may cancel the n and F_n to get $2^{n-1} \equiv 1$ (mod 25). Since 2 belongs to the exponent 20 (mod 25), it follows that $n \equiv 1 \pmod{20}$. Thus $n \equiv 1 \pmod{4}$. But $F_n \equiv n \equiv 1 \pmod{4}$, so F_n must be odd. But F_n is even if and only if $n \equiv 0 \pmod{3}$, so $n \equiv 1 \text{ or } 2 \pmod{3}$. Combining results,

$$\begin{array}{c|c} n \equiv 1 \pmod{3} \\ n \equiv 1 \pmod{20} \end{array} \right\} n \equiv 1 \pmod{60} \text{ or } \begin{array}{c} n \equiv 2 \pmod{3} \\ n \equiv 1 \pmod{20} \end{array} \right\} n \equiv 41 \pmod{60} .$$

Now suppose that $n \equiv 41 \pmod{60}$. Let n = 60k + 41. By Lemma 2,

$$F_n \equiv 20k \cdot F_{40} + (60k + 1)F_{41} \pmod{100}$$
.

By inspection of tables, we have $F_{40} \equiv 55 \pmod{100}$ and $F_{41} \equiv 41 \pmod{100}$. Therefore, we have

$$F_n \equiv (60k + 41) + 20k \cdot 55 \equiv 60k + 41 \equiv n \pmod{100}$$
.

This result, along with (3), completes the proof of Case 1.

Case 2. $n \equiv 2 \pmod{5}$.

This case is impossible, for as in Case 1, it follows that $n \equiv 1 \pmod{20}$, a contradiction.

Case 3. $n \equiv 3 \pmod{5}$. Let n = 3 + 5k. Then from (2),

$$2^{2+5k} F_n \equiv n + n \cdot \frac{5(2 + 5k)(1 + 5k)}{6} \pmod{25}.$$

Assuming $F_n \equiv n \pmod{100}$, we may cancel the F_n and n's, since (n, 25) = 1, obtaining $3 \cdot 2^{3+5k} \equiv 6 + 5 \cdot 2 \cdot 1 \pmod{25}$. Thus $2^{5k+6} \equiv 1 \pmod{25}$. But this congruence implies $5k + 6 \equiv 0 \pmod{20}$, or $5k \equiv 14 \pmod{20}$. This congruence is not possible, so case 3 is impossible.

Case 4. $n \equiv 4 \pmod{5}$.

Assume $F_n \equiv n \pmod{100}$. Let n = 4 + 5k. Then $3 \cdot 2^{4+5k} \equiv 6 + 5 \cdot 3 \cdot 2 \pmod{25}$, so $2^{5k-5} \equiv 1 \pmod{25}$, and $5k \equiv 5 \pmod{20}$. Thus $n = 5k + 4 \equiv 9 \pmod{20}$. F_n and n are therefore odd, so $n \equiv 1$ or 2 (mod 3). Combining results,

$$\begin{array}{c} n \equiv 1 \pmod{3} \\ n \equiv 9 \pmod{20} \end{array} \right\} n \equiv 49 \pmod{60} \quad \text{or} \quad \begin{array}{c} n \equiv 2 \pmod{3} \\ n \equiv 9 \pmod{20} \end{array} \right\} n \equiv 49 \pmod{60} \quad \text{or} \quad \begin{array}{c} n \equiv 2 \pmod{3} \\ n \equiv 9 \pmod{20} \end{array} \right\} n \equiv 29 \pmod{60} .$$

Now suppose that $n \equiv 29 \pmod{60}$. Let n = 29 + 60k. By Lemma 2,

$$F_n \equiv F_{60k}F_{28} + F_{60k+1}F_{29} \pmod{100}$$
.

By inspection of tables, $F_{28} \equiv 11 \pmod{100}$, and $F_{29} \equiv 29 \pmod{100}$. Thus by Lemma 1, we have

 $F_n \equiv 20k \cdot 11 + (60k + 1) \cdot 29 \equiv 60k + 29 \equiv n \pmod{100}$.

Suppose $n \equiv 49 \pmod{60}$. Let n = 49 + 60k. By similar reasoning,

 $F_n \equiv 20k \cdot F_{48} + (60k + 1)F_{49} \equiv 20k \cdot 76 + (60k + 1) \cdot 49 \equiv 60k + 49 \equiv n \pmod{100}$.

This result completes the proof of Case 4.

Case 5. $n \equiv 0 \pmod{5}$.

Let $n = 5^{S} \cdot k$, where $s \ge 1$, and (5,k) = 1. We shall consider in order the possibilities $n \equiv 0, 1, 2, and 3 \pmod{4}$. Assume $F_n \equiv n \pmod{100}$. If $n \equiv 0 \pmod{4}$, and s = 1, then n = 5k, where (5,k) = 1. Thus we get $2^{n-1}F_n \equiv n \pmod{25}$ from (2). Now $F_n \equiv n \equiv 5k \pmod{25}$ implies $2^{n-1} \cdot 5 \equiv 5 \pmod{25}$, so $n \equiv 1 \pmod{4}$. But in this case, the last result is impossible, so it follows that $s \ge 2$. Also, since F_n must be even, we have $n \equiv 0 \pmod{3}$. Finally, $n \equiv 0 \pmod{5^S}$ implies $n \equiv 0 \pmod{25}$. Combining, we have

1974]

 $\left. \begin{array}{cccc} n \equiv 0 \pmod{3} \\ n \equiv 0 \pmod{4} \\ n \equiv 0 \pmod{25} \end{array} \right\} n \equiv 0 \pmod{300} .$

Let us suppose that $n \equiv 0 \pmod{4}$; we have F_n odd, so there are two combinations:

If $n \equiv 2 \pmod{4}$, we have

 $\begin{array}{l} n \equiv 0 \pmod{3} \\ n \equiv 2 \pmod{4} \\ n \equiv 0 \pmod{5} \end{array} \right\} n \equiv 30 \pmod{60} .$

Let n = 30 + 60k. By Lemmas 1 and 2,

$$F_n = F_{60k+30} \equiv 20kF_{29} + (60k + 1)F_{30} \pmod{100}$$
.

But this reduces to $F_n \equiv 20k + 40 \pmod{100}$. Now $F_n \equiv n \equiv 30 + 60k \pmod{100}$ implies $20k + 40 \equiv 60k + 30 \pmod{100}$, or $40k \equiv 10 \pmod{100}$, which is impossible. If $n \equiv 3 \pmod{4}$, we get two combinations:

The first congruence results in

$$F_n = F_{55+60k} \equiv 40k + 45 \pmod{100}$$
,

and $F_n \equiv n = 55 + 60k$ implies $20k \equiv 90 \pmod{100}$, which is impossible. The second congruence results in

$$F_n = F_{35+60k} \equiv 40k + 65 \pmod{100}$$

and $F_n \equiv n = 35 + 60k$ implies $20k \equiv 30 \pmod{100}$, which is also impossible. Suppose $n \equiv 5 \pmod{60}$. Let n = 5 + 60k. Then $F_n = F_{5+60k}$, so

 $F_n \equiv 20k \cdot F_4 + (60k + 1) \cdot F_5 \equiv 60k + 5 \equiv n \pmod{100}$.

0)

∫Feb.

90

Suppose $n \equiv 25 \pmod{60}$. Let n = 25 + 60k. Then

$$F_n = F_{25} + 60k$$
,

 \mathbf{so}

1974]

$$F_n \equiv 20k \cdot F_{24} + (60k + 1) \cdot F_{25} \equiv 60k + 25 \equiv n \pmod{100}$$

Finally, if $n \equiv 0 \pmod{300}$, then 300 divides n, so F_{300} divides F_n . By Lemma 1, $F_{300} \equiv 0 \pmod{100}$, and thus $F_n \equiv 0 \equiv n \pmod{100}$.

This result completes the proof of the theorem.

Corollary. If p is a prime ≥ 5 , then $F_{p^2} \equiv p^2 \pmod{100}$.

<u>Proof.</u> By the theorem, $F_5 \equiv 5 \pmod{100}$. If p is a prime >5, then

 $p \equiv 1, 3, 7, 9, 11, 13, 17, \text{ or } 19 \pmod{20}$.

Thus $p^2 \equiv 1$ or 9 (mod 20). Since $p^2 \equiv 1 \pmod{3}$, it follows that $p^2 \equiv 1$ or 49 (mod 60).

REFERENCES

1. G. H. Hardy and E. H. Wright, An Introduction to the Theory of Numbers,

- 2. S. L. Basin and V. E. Hoggatt, Jr., "A Primer on the Fibonacci Sequence, Part I," Fibonacci Quarterly, Vol. 1, No. 1 (Feb. 1963), pp. 65-72.
- 3. Dov Jarden, Recurring Sequences, Riveon Lematematika, Jerusalem, Israel, 1958.
