# ON THE DIVISORS OF SECOND-ORDER RECURRENCES 

## PAUL A. CATLIN

Carnegie-Mellon University, Pittsburg, Pennsylvania 15213

## 1. INTRODUCTION AND NOTATIONS

In this note, we shall give a criterion to determine whether a given prime $p$ divides terms of the second-order recurrence

$$
\begin{equation*}
A_{n+2}=P A_{n+1}-Q A_{n}, \tag{1}
\end{equation*}
$$

with arbitrary initial values $A_{0}$ and $A_{1}$, and we shall give several applications.
A particular case of (1) is the recurrence

$$
\begin{equation*}
U_{n+2}=P U_{n+1}-Q U_{n}, \quad U_{0}=0, \quad U_{1}=1 \tag{2}
\end{equation*}
$$

We shall denote by $\Delta$ the discriminant $P^{2}-4 Q$ of the recurrence. The general term $U_{n}$ of (2) may be denoted by

$$
\left(a^{n}-b^{n}\right) /(a-b),
$$

where

$$
a=\frac{P+\sqrt{\Delta}}{2}
$$

and

$$
b=\frac{P-\sqrt{\Delta}}{2}
$$

There is an integer $k(m)$ such that $m$ divides $U_{n}$ if and only if $k(m) \mid n$. $p$ will denote a prime not dividing $Q$. In this paper, we shall be working in the field of integers modulo $p$.

## 2. THE CRITERION FOR DIVISIBILITY

Let $R_{n}$ be the quotient $U_{n+1} / U_{n}(\bmod p)$ : i.e., the solution $X$ of

$$
\mathrm{XU}_{\mathrm{n}} \equiv \mathrm{U}_{\mathrm{n}+1} \quad(\bmod \mathrm{p})
$$

$R_{n}$ exists, unless $p$ divides $U_{n}$, in which case the value of $R_{n}$ will be denoted by $\infty_{\text {。 (All }}$ quotients which have a zero divisor will be denoted $\infty_{0}$ ) If $R_{n}$ exists and is nonzero, then

$$
\begin{equation*}
\mathrm{R}_{\mathrm{n}+1} \equiv \mathrm{U}_{\mathrm{n}+2} / \mathrm{U}_{\mathrm{n}+1} \equiv \mathrm{P}-\mathrm{QR}_{\mathrm{n}}^{-1} \quad(\bmod \mathrm{p}) ; \tag{3}
\end{equation*}
$$

if $p \mid R_{n}$ then $R_{n+1} \equiv \infty$; if $R_{n} \equiv \infty$ then $p \mid U_{n}$, so $R_{n+1} \equiv P(\bmod p)$.
Theorem 1. $\left(R_{n}\right)$ is a first-order recurrence $\bmod p$ and is periodic with primitive period $k(p)$.

Proof. We have already shown that $\left(R_{n}\right)$ is a first-order recurrence (3). That it has primitive period $k(p)$ follows from the definition of $k$ and the fact that $R_{n} \equiv 0$ if and only if $p \mid U_{n+1}$.

The following theorem gives a criterion for determining whether $p$ is a divisor of terms of $\left(A_{n}\right)$. It is known that if a number $m$ divides some term $A_{n}$ of (1), then $m$ divides $A_{n+t k(m)}$ for any integer $t$ for which the subscript is nonnegative, and only those terms.

Theorem 2. (Divisibility criterion). $p$ is a divisor of $A_{t k(p)-n}$ (for any $t$ for which the subscript is nonnegative) if and only if

$$
\mathrm{A}_{1} / \mathrm{A}_{0} \equiv \mathrm{R}_{\mathrm{n}} \quad(\bmod \mathrm{p})
$$

Proof. By Eq. (8) of [6].

$$
Q^{n} A_{m}=U_{n+1} A_{k(p)}-U_{n} A_{k(p)+1}
$$

where $\mathrm{m}+\mathrm{n}=\mathrm{k}(\mathrm{p})$. Thus, $\mathrm{p} \mid \mathrm{A}_{\mathrm{m}}$ if and only if

$$
\mathrm{A}_{\mathrm{k}(\mathrm{p})+1} / \mathrm{A}_{\mathrm{k}(\mathrm{p})} \equiv \mathrm{R}_{\mathrm{n}},
$$

and it is known that

$$
\mathrm{A}_{\mathrm{k}(\mathrm{p})+1} / \mathrm{A}_{\mathrm{k}(\mathrm{p})} \equiv \mathrm{A}_{1} / \mathrm{A}_{0}
$$

Furthermore, $p \mid A_{m}$ if and only if $p \mid A_{t k(p)-n}$, and the theorem follows.

## 3. APPLICATIONS OF THE CRITERION

It is well known that $k(p) \mid p-(\Delta / p)$. A proof is given in [4] for the Fibonacci series, and it may be easily generalized to the recurrence (2). For most recurrences, there are many primes p such that $\mathrm{k}(\mathrm{p})=\mathrm{p}-(\Delta / \mathrm{p})$. In the first two theorems in this section, we consider such primes.

The following result was proved in [1] and [2] for the Fibonacci series.
Theorem 3. If

$$
k(p)=p+1
$$

then $p$ divides some terms of $\left(A_{n}\right)$ regardless of the initial values $A_{0}$ and $A_{1}$, and conversely.

Proof. It follows from Theorem 1 that if

$$
\mathrm{k}(\mathrm{p})=\mathrm{p}+1
$$

then for any residue class $c$ there is an $n$ such that $c \equiv R_{n}(\bmod p)$. Therefore, there is an n such that

$$
\mathrm{A}_{1} / \mathrm{A}_{0} \equiv \mathrm{R}_{\mathrm{n}} \quad(\bmod \mathrm{p})
$$

and the first part follows by the criterion of Theorem 2. If $k(p)$ is less than $p+1$ then not every residue class is included in ( $\mathrm{R}_{\mathrm{n}}$ ), and the converse follows.

Theorem 4. $p$ is a divisor of terms of $\left(A_{n}\right)$ for any initial values $A_{0}$ and $A_{1}$, excepting when $A_{1} / A_{0} \equiv a$ or $b$, if and only if $k(p)=p-1$.

Proof. Since

$$
\mathrm{k}(\mathrm{p})=\mathrm{p}-1,
$$

we have

$$
(\Delta / \mathrm{p})=1
$$

so $a$ and $b$ are in the field of integers modulo $p$ and $p \nmid \Delta$. By definition,

$$
\mathrm{R}_{\mathrm{n}} \equiv\left(\mathrm{a}^{\mathrm{n}+1}-\mathrm{b}^{\mathrm{n}+1}\right) /\left(\mathrm{a}^{\mathrm{n}}-\mathrm{b}^{\mathrm{n}}\right) .
$$

If $R_{n} \equiv a(o r b)(\bmod p)$ then it follows that $a \equiv b$, whence $p \mid \Delta$, giving a contradiction. Thus, $R_{n} \not \equiv a$ or $b$. By Theorem 2 and the fact that $R_{n} \equiv A_{1} / A_{0}$ for some $n$ when

$$
\mathrm{k}(\mathrm{p})=\mathrm{p}-1
$$

and

$$
\mathrm{A}_{1} / \mathrm{A}_{0} \not \equiv \mathrm{a} \text { or } \mathrm{b}(\bmod \mathrm{p})
$$

we see that $p$ divides terms of $\left(A_{n}\right)$. If $k(p)$ is less than $p-1$, then not every residue class can be included in $\left(R_{n}\right)$, whence the converse follows.

Theorem 5. If

$$
\mathrm{A}_{1} / \mathrm{A}_{0} \equiv \mathrm{a} \text { or } \mathrm{b}(\bmod \mathrm{p})
$$

then $p$ divides no term of ( $A_{n}$ ).
Proof. If

$$
\mathrm{A}_{1} / \mathrm{A}_{0} \equiv \mathrm{a} \text { or } \mathrm{b}
$$

then

$$
(\Delta / p)=1
$$

and p$\} \Delta$. If

$$
\mathrm{R}_{\mathrm{n}} \equiv \mathrm{a}(\text { or } b) \quad(\bmod \mathrm{p})
$$

then

$$
\left.\left(a^{n+1}-b^{n+1}\right) /\left(a^{n}-b^{n}\right) \equiv a \quad \text { or } b\right)
$$

so that $\mathrm{a} \equiv \mathrm{b}$ and $\mathrm{p} \mid \Delta$, giving a contradiction. Thus, $\mathrm{R}_{\mathrm{n}} \not \equiv \mathrm{a}$ (or b$) \equiv \mathrm{A}_{1} / \mathrm{A}_{0}$, and so $\mathrm{p} \nmid \mathrm{A}_{\mathrm{n}}$ for any n , by Theorem 2 .

## 4. CONCLUDING REMARKS

Hall [3] has given a different criterion for whether a prime $p$ divides some terms of (1). Bloom [2] has studied the related question of which composite numbers (as well as which primes) are divisors of recurrences of the form (1) with $P=1, Q=-1$.

Ward [5] has pointed out that the question of whether or not there are infinitely many primes for which $k(p)=p+1$ or $p-1$ is a generalization of Artin's conjecture that an integer not -1 or a square is a primitive root of infinitely many primes. For recurrences in which $\Delta$ is a square and a or $b$ is 1 , the question is equivalent to Artin's conjecture.

## RE FERENCES

1. Brother U. Alfred, "Primes which are Factors of all Fibonacci Sequences," Fibonacci Quarterly, Vol. 2, No. 1 (February 1964), pp. 33-38.
2. D. M. Bloom, "On Periodicity in Generalized Fibonacci Sequences," Amer. Math. Monthly, 72 (1965), pp. 856-861.
3. Marshall Hall, "Divisors of Second-Order Sequences," Bull. Amer. Math. Soc. , 43 (1937), pp. 78-80.
4. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Third Ed., Clarendon Press, Oxford, 1954.
5. Morgan Ward, "Prime Divisors of Second-Order Recurrences," Duke Math. J., 21 (1954) pp. 607-614.
6. Oswald Wyler, "On Second-Order Recurrences," Amer. Math. Monthly, 72 (1965), pp. 500-506.
