
GENERALIZATION OF HERMITE'S DIVISIBILITY THEOREMS AND 
THE MANN - SHANKS PRIMALITY CRITERION FOR s-FIBONOMIAL ARRAYS 

H. W. GOULD 
West Virginia University, Morgantown, West Virginia 26506 

1. INTRODUCTION 
In a previous paper [4] I found that two theorems of Hermite concerning factors of b i -

nomial coefficients might be extended to generalized binomial coefficients [2] , however one 
of my proofs imposed severe restr ict ions on the sequence {-A } used to define the general-
ized coefficients- Also it was found that the Mann-Shanks primality criterion [6] follows 
from one of the Hermite theorems and it appeared evident that the cri terion also held in the 
Fibonomial a r ray , but the proof was not completed. 

In the present paper I remove all these defects by proving the Hermite theorems in a 
more elegant manner so that very little needs to be assumed for the generalized a r ray , and 
the Mann-Shanks cri terion is not only proved for the Fibonomial a r r a y but for the s-Fibonom-
ial and q-binomial a r r ays . Some typographical e r r o r s in [4] are also corrected. 

2. THE GENERALIZED HERMITE THEOREMS 
Let {A } be a sequence of integers with A0 = 0, A ^ 0 for all n > 1, and other-

wise arbi t rary . Define generalized binomial coefficients by 

A A , • • • A <a i\ ) n ( '" n" n -1 n-k+1 .,, j n ) 

These generalize the o r d i n a l binomial coefficients which occur for A, = k identically. 
Proper t ies of the a r ray and their history may be found in [2]. Our attention here is fixed on 
the case when these coefficients are all integers. Arithmetic propert ies are then of pr imary 
concern. As usual, (a,b) will mean the greatest common divisor of a and b, and a |b 
means a divides b. 

Theorem 1. 

(2.2) 

and 

(2.3) 

We may now state: 

A 
n (A ,A. ) n k 

A n -k+ l 

fn\ 
\ 

{: 

provided only that in (2.3) we suppose (A , A )|A of course, in (2.2) we always 
have (A ,A. ) A , so that (2.3) is only slightly l e s s general than (2.2). n K ' n 

In [4] I stated that (2.3) holds provided A 1 - A, = A , or something close to 
this. We shall see that no such assumption is necessary. 
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Proof of (2.2), By the Euclidean algorithm we know that there exist integers x and y 
such that (A , A. ) = xA + yA. . Therefore n k n J k 

(vv{n
kJ = *\{k} + ^k{k} = XAJJ} + y A n { j : ; } = A n . E , 

for some integer E. Since (A , A, )|A we have proved that (2.2) is true. 
Proof of (2.3). Again, for some integers x and y, (A - , A, ) = xA - + yA, , 

whence 

= xA ^ . in * H + yA ^ . (. n A = A _,, . -F , n+l-k ( k f J n+l-k [ k - 1 f n+l-k 
for some integer F. Thus we have proved in general that 

(2-4) A _,_-, , I (A .1.1» A, ) if \ > 
n+l-k I n+1' k \ kf 

and when we suppose that (A , A, )|A - , we obtain (2.3). 
The proof I tried in [4] motivated by HermiteTs own argument ran as follows: We have 

whence 
(An+l' V = ^ n + 1 + yAk = x(\+l " V + (x + y ) Ak ' 

(An+l> V {1} = x<An+l " V {k} + (x + ^Ak {J} 

^ A n + 1 - k { k } + ( x + y)An+l-k{k-l} 
A ^ - A, n+1 x 

A n + 1 -

and from this, if we suppose that A - - A. = A +1_k» as stated in [4] , we could obtain 
(2.3), because this also implies (A - , A, )|A . . We may also merely suppose that 
A - , J A - - A, and we shall have proved (2.4), but as seen in our general proof none of 
these assumptions is necessary. Hermite 's device of shifting te rms around does not gener-
alize, but then also the shifting is not needed. 

In the proof of (2.2) we have used the obvious fact that 

Ak{k( = \ \ k - 1/ ' 

and in our proof of (2.3) we used the obvious relations 

simple analogues of corresponding formulas for ordinary binomial coefficients. 
As our resul ts apply to the Fibonacci numbers , and Fibonomial coefficients, it still 

seems necessary to know that (F , F , ) = F, ,v if only to get an easy proof that (F + 1 » F ) 
I F - . so that we can have (2.3) as well as (2.2). Thus we have 

( F n + l ' V = F (n+l ,k) = F (n+l-k ,k) = ( F n + l - k ' V 
which means that (F - , F, ) |F + 1 _ k - In any event, our results are obtained more elegantly 
by our present proofs. 
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According to Dickson?s History [ l , p. 265] Th. Schonemann in 1839 proved that 

/9 t-x (a ,b, • • • , m)(a + b + • • • + m - 1)! 
W.b) afb! • • . m l ~ 

is an integer. The situation for two integers a ,b is just that 

(9 f\) (a,b)(a + b - 1)! 
U ' b ' ~ a lb! 

is an integer. This follows at once from Hermite 's original form of (2.2), because by putting 

H(n,k) = M \l\ , 
n | k f 

which is an integer, then clearly 

H(a + b, b) = (a + b ' b ) | a + b l = (a'b)(a,+
h,b - 1)! 

v a + b ( b ) a! bt 

must be an integer. The multinomial extension of Schonemann follows readily f romHermite !s 
theorem. I was reminded of these things by a le t ter from Gupta [5] who remarked that a nice 
Fibonomial extension of (2.6) would be that 

F , v [m + n - l ] t (m,n)L J 

(2.7) ' [mj I [nJT 

is an integer. This, of course, follows at once from (2.2) when A = F and we define gen-
eralized factorials by 

(2.8) [n]l = A n A n - 1 . . . A 2 A l f with [0] ! = 1 . 

Indeed, the more general assert ion from (2.2) is that since 

„, M
 (An5 V fn\ 

H(n,k) = — j _ - k 
n l ; 

is an integer, so also is 
(A , A ) , , x (A , , A ) [ m + n - 1] ! 

,<, „v TT/ , \ m+n' n ' m + n _ m+n? n / L J 

(2.9) H ( m + n , n) = — x — < \ r , r , 
Am+n f n } [m] ! [n] ! 

an integer. 
According to Dickson [1, p. 265] Cauchy also proved Schonemann's theorem for (2.5), 

and Catalan (1874) proved that (2.6) is an integer in case (a,b) = 1. 
Catalan, Segner, Euler, etc. , found that (n + 1) | < > by comb ina to rial or geo metrical 

arguments. See my bibliography [3] for a l i s t of 243 items dealing with the Catalan numbers , 
ballot numbers , and related mat te rs . A supplement of over 75 items is being prepared. 

The fact that (n• + 1) | \ > follows at once from (2.3) so that the number 
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(2.10) c(Q.k) = r 1 k e 
n+l-k ( k ' 

is a natural generalization. Unfortunately, even in the case A = F we do not yet have a 
suitable combinatorial interpretation of this number. 

3. THE MANN-SHANKS CRITERION FOR FIBONOMALS 

In [4] we gave some alternative formulations of the elegant Mann-Shanks primality 
criterion [6]. In part icular we noted that their beautiful theorem maybe written in the form: 

C = prime if and only if R f ~ nrt} 
(3.1) { l \ C - 2 R / 

for every integer R such that C/3 < R < C/2, R > 1 . 

Here R and C are the row and column numbers , respectively, in the original Mann-Shanks 
shifted binomial a r ray . We showed that when C is a prime the indicated divisibility follows 
at once from Hermite 's form of (2.2). 

The corresponding theorem for Fibonomial coefficients ( i .e . , with A = F in (2.1)) 
is also true. That i s , we have 

Theorem 2. In the Fibonomial coefficient a r ray , 

C = prime if and only if F g \ \ c 9T>\ 

for every integer R such that C/3 < R < C/2, R > 1 . 

Note that the single difference between this and (3.1) is that the row number R must be r e -
placed by the corresponding Fibonacci number F R . When C = pr ime, the divisibility 
follows from (2.2) since this implies that F ^ /(F-p, F ^ ™ ) is a factor of the Fibonomial 
coefficient; however we also have 

( F R ' F C - 2 R ) = F (R,C-2R) = F (R,C) = F l = x 

when C/3 < R £ C/2. Thus, we have only to consider the case when C is composite. Our 
proof is just a slight modification of the proof givenby Mann-Shanks. Suppose C = 2k, with 
k = 0, 2, 3, 4, • • • ; then the unit < ft ? = 1 always occurs in the column, so divisibility can-
not occur, and it is sufficient to consider odd composite C. Let p be an odd prime factor 
of C, and write C = p(2k + 1), with k >. 1. Choose R = pk. Then the coefficient in the 
R-row and C-column is { > , and 

1 / k p ) =
 F p k ' F p k - l ' F p k - 2 pk-p-fi 

F . \ p J F . . F - F , F-
pk l F ; pk p p -1 1 
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Cancel F , with F . . The factors F _ , F , • • • , F- in the denominator cannot affect 
the possible divisibility of F into the numerator since 

(F , F ) = F , v = F , v = F- = 1 for all 1 < r < p - 1 , 
p p - r (p,p-r) (p,r) 1 y 

while on the other hand F is relatively prime to every factor in the numerator since 

(V W = F(P,PN) = F(P,J) = Fi = 1 f o r * ' - j - p - x • 

and so F , which is greater than 1 for odd pr imes p, cannot divide into the numerator. 
This means, equivalently, that the row number F , cannot divide the coefficient I F > . 
The proof is complete. 

Our proof is a modification of the Mann-Shanks argument using the fact again that 

(F , F, ) = F , ,v . v a b ' (a,b) 

4. THE MANN-SHANKS CRITERION FOR s-FIBONOMIAL ARRAYS 

The s-Fibonomial coefficients follow from (2.1) when we set A = F , s being any 
positive integer. Our theorem 2 above handles the case s = 1. We now have 

Theorem 3. In the s-Fibonomial a r ray , the Mann-Shanks criterion is true. That i s , 

I C = prime if and only if r-P- I < c _ 2 R > 
(4.1) \ . s s 

l for every integer R such that C/3 ^ R ^ C/2, R > 1 . 

To see the motivation, consider Hermite 's extended theorem (2.2) with A ~ F . 
n sn 

We see that F „ / ( F ^, F n Q „ ) is a factor of the coefficient in the R-C position of the 
SR Sx\ S ^ — ZS-t\ 

Mann-Shanks type ar ray . But when C = prime we have 

( F s R ' F s C - 2 s R ) = F ( sR,sC-2sR) = F ( sR,sC) = F s (R,C) = F s ' 

since C = prime implies (R,C) = 1 for each C/3 < R < C/2, R > 1. Thus (2.2) yields 
F „ / F as a factor. By the way, it is a known fact that F | F R . To prove the converse 
case, when C is composite, f irst assume C = 2 k , k = 0, 2, 3, 4, • • • . Then again the 

unit < Q > = i occurs in the column; so that it is sufficient to study the situation for odd com-
posite C. Let p be an odd prime factor of C, and put C = p(2k + 1), k ^ 1. Choose as 
before R = pk. Then the coefficient in the R-C spot is the s-Fibonomial coefficient < p > . 
We find now that 
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Cancel F and F . . Now it is easy to see that s spk J 

(F , F ) = F, v = F , x = F . x = F 
sp sp - s r (sp, sp-sr) (sp,sr) s(p,r) s 

for all 1 < r ^ p - 1. Also, 

(F , F . .) = F , . .v = F, ., = F . .v = F 
sp spk-sj (sp,spk-sj) (sp,sj) s(p,j) s 

for all 1 < j ^ p - l . Remove the common factor F throughout. We see now that 

/ F F \ 
i SP sp - s r i 
V F s ' Fs ) 

1, for all 1 < r < p - 1 , 
\ x s x s / 

and 
/ F^ F o r a r o . \ 

for all 1 < j < p - 1 . 

Also, F / F > 1, and we find that F / F cannot divide the numerator; equivalently we sp s sp s 
have shown that F , / F cannot divide the s-Fibonomial coefficient so that our proof is 
complete. 

It would appear that a Fibonacci-type property (a homomorphism) 

<4-2) ( A a ' V = A(a,b) 

would be very useful for proving Mann-Shanks type cr i ter ia in general a r rays . 

5. THE MANN-SHANKS CRITERION FOR q-BINOMIAL ARRAYS 

The q-binomial or Gaussian coefficients are defined by 

a b (a b) 
They are polynomials in q. Since in fact (q - 1, q - 1) = q - 1, it is not surprising 
now that we can as se r t the Mann-Shanks criterion for the q-binomial ar ray . The q-analogue 
of (3.1) is motivated by Hermite 's generalized theorem (2.2) for we now have that the coef-
ficient in the R-C position is divisible by 

g - i 
/ R ., C-2R .,\ 
(q - 1, q - 1) 

which reduces to 
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q - 1 

when C is a prime and C/3 ^ R ^ C/2, R ^ 1. Consequently we are led to the following: 
Theorem 4. The Mann-Shanks criterion for primality holds in the q-binomial ar ray . 

That i s : 

!

C = prime if and only if 
for every integer R such that C/3 ^ R ^ C/2, R > 1, 
and where the q-binomial coefficients a re defined by (5.1). 

The proof is left to the reader. 
In each of the cases we have presented in this paper, the first non-trivial instance of 

the non-divisibility by a row number occurs when C = 25. The next case is then C = 35. 
Up to this point a row number fails to divide an a r ray number because of the presence of a 
unit in the column. C = 25 and 35 are the first composite numbers where no unit appears. 
The next such numbers are 49, 55, 65, 77, 85, 95, corresponding to those numbers of form 
6j ± 1 which are composite. 

The column entr ies for C = 25 in the ordinary Pascal case are 36, 252, 165, 12, with 
corresponding row numbers 9, 10, 11, 12. 10 fails to divide 252, while the other row 
numbers divide their column entr ies . Similarly, for the Fibonomial a r ray , the column en-
t r ies are 714, 136136, 83215, 144, with row numbers 34, 55, 89, 144. Here 55 fails to 
divide 136136. In the q-binomial a r ray , the column entries a re 

(q9 - l)(q8 - 1) ^ (qio - i)(q» _ i)(q» _ p(qT _ i)(q6 _ x) ^ 

(q2 - l)(q - 1) ' (q5 - l)(q4 - l)(q3 - l)(q2 - l)(q - 1) 

(q11 - l)(q10 - l)(q9 - 1) (q12 - 1) 

(q3 - D(q2 - l)(q - 1) q - 1 

The corresponding row numbers are 

(q9 - l) /(q - 1), (q10 - l) /(q - 1), (q11 - l) /(q - 1), and (q12 - l) /(q - 1). 

It is again, of course, the second row number that fails to divide the coefficient in the column. 
For a r r ays of the type we are studying this behavior is typical. 

The column entries for C = 35 in the Pascal a r r ay are 12, 715, 3432, 3003, 560, 17, 
with row numbers 12, 13, 14, 15, 16, 17. Here 14/3432, and 15J3003. For the Fibonom-
ial a r ray the entries are 144, 27372840, 14169550626, 22890661872, 113490195,1597, with 
row numbers 144, 233, 377, 610, 987, 1597, and the row numbers 377 and 610 are the 
ones which fail to divide their corresponding column entr ies . 

I C - 2 E | 
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6. GENERALIZED MANN-SHANKS CRITERIA 

[April 

By placing units in the (R, 2R) and (R, 3R) positions in their rectangular a r ray and 
carefully choosing the other entries (which turned out to be binomial coefficients) Mann and 
Shanks developed a kind of sieve which tests numbers of the form 6j ± 1 for primality. This 
suggests that there may be ways to devise similar sieves based on other arithmetic p rogres -
sions. After all, it is a very old theorem of Dirichlet that if (a,b) = 1 then there are infin-
itely many primes of the form a + bt, where t ranges over the integers. We might expect 
then to find a criterion similar to that of Mann-Shanks by using the progressions 4j ± 1 for 
example. Although I have not found amy simple formula for gene rating the entries in an ar ray , 
I can suggest some obvious necessary propert ies of such an a r ray , by analogy with the or igi-
nal Mann-Shanks ar ray . Below is presented an outline for such an array: 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

0 

1 

1 2 3 4 

1 - 1 
1 

5 6 7 

2 - 2 
1 3 

8 9 

1 
_ * 
1 * 

10 

_ 
-
1 

11 

3 
4 
5 

12 

1 
-
_ 
1 

13 

4 
5 
6 

14 

-
_ 
_ 
1 

15 

* 
* 
* 
* 

16 

1 
_ 
_ 
-
1 

17 

5 
6 
7 
8 

18 

_ 
_ 
_ 
_ 
1 

19 

5 
6 
7 
8 
9 

20 

1 
_ 
_ 
_ 

1 

21 

* 
* 
* 
* 
* 

Numbers listed above are the smallest factors which an entry musthave in order to be allow-
ed, so that the row number will divide each entry in a prime column. This guarantees that 
a prime will correspond to the row-column divisibility property desired. However, of the 
remaining entr ies , those spots marked by a dash (-) can be filled arbi t rar i ly , while those 
marked by a s tar (*) must be chosen so that at least one of the s ta r red numbers in each col-
umn will not be divisible by the row number. Such special column numbers are 9, 15, 21 , 
25, 27, etc. One may imagine that it would be desirable to have a symmetrical row, in an-
alogy to the binomial coefficients, though this may not be desired. However, it seems worth 
exploring. The first few rows suggest such symmetry. For this reason, I place a factor of 
7 in the R = 7, C = 25 position to preserve symmetry in that row, etc. It would be very 
remarkable if we could determine simple formulas for generating such generalized Mann-
Shanks a r rays based on Dirichlet progressions. 

In the outline a r r ay based on 4j ± 1, it is easy to see that the bottom s tar in the special 
columns will always occur for row number (K - l ) / 2 , where K = 4j ± 1 ^ prime. If we 
choose an entry for that position which is not divisible by the row number and otherwise fill 
open spots in the a r r ay by the row number in any given row, we shall obtain the following 
a r ray having the Mann-Shanks property: 
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1 

9 

1 

8 

9 

1 

b 

8 

9 

1 

6 

7 

8 

9 

1 

5 

6 

7 

8 

9 

1 

a 
5 

6 

7 

8 

9 

1 

3 

4 

5 

6 

7 

8 

9 

1 

2 

3 

4 

5 

6 

7 

8 

9 

1 

2 

3 

4 

5 

6 

7 

8 

9 

1 

2 

3 

4 

5 

6 

7 

8 

9 

1 

3 

4 

5 

6 

7 

8 

9 

1 

4 

5 

6 

7 

8 

9 

1 

5 

6 

7 

8 

9 

1 

6 

7 

8 

9 

1 

7 

8 

9 

1 

8 

9 

1 

9 1 

1 c 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 1 

1 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 1 

where 4/fa, 7/fb, l o | c , 12/[d, etc. For example, we could simply choose a = b = c = d 
= . . . = 1 throughout. We summarize in the following: 

Theorem 5. Let an a r r ay be defined by 

A(n,0) = A(n, 2n) = 1, n ^ 0 , 

A (n,k) = n, 2 =£ k < 2n - 1 , 

T*C — 1 A(n, l ) = n, if n f —^— , where K = 4j ± 1 f- p r ime, 

A(n,l) = x, with n/fx, if n K - 1 

Then this a r r ay has the Mann-Shanks property when shifted in the way of the original Mann-
Shanks a r ray . 

Similarly, the binomial coefficients in the original Mann-Shanks a r ray maybe replaced 
by numbers chosen in the same way. We have 

Theorem 6. Let an a r ray be defined by 

A(n,0) = A(n,n) = 1, n ^ 0 , 

A(n,k) = n, 2 ^ k < n - 1, 

A(n, l ) = n, if n / ~ , where K = 6j ± 1 ^ pr ime, 

A(n,l) = x, with n/x, if n K - 1 

Then this a r ray , when shifted as prescribed by Mann-Shanks has the Mann-Shanks primality 
criterion property. 

These two examples are not what we mean by a ?simple formula' of course, because we 
must prescr ibe and know the prime nature of a + bt in advance, whereas the beauty of the 
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binomial coefficients, Fibonomial coefficients, or q-binomial coefficients is that they auto-
matically take care of the situation. Nevertheless, it is felt that Theorems 5 and 6 shed fur-
ther light on the nature of the Mann-Shanks property. 

Another intriguing problem would be to find out whether any similar extensions to high-
e r dimensions might be possible, using multinomial coefficients and variations. 

7. TYPOGRAPHICAL ERRORS IN PREVIOUS PAPER 

In [4] the following e r r o r s have been noted: p. 356, in (2.3), for "mod • • • " read 
" (mod • • • ) " ; ? . 359, line 4, for 

( i LT1) read [S-^-lJ ; 

p. 360, lines 6 and 8 from bottom, for "Erdos" read "Erdbs" ; p. 372, in Ref. 2, for "Insti-
tute" read "Institution. " 
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