COMBINATIONS AND SUMS OF POWERS

MYRON TEPPER

195 Dogwood, Park Forest, Illinois 60466

We adopt the following notation and conventions:

1. n and Q are non-negative integers.
2.

$S_{Q}=\sum_{i=1}^{n} i^{Q}$.
3.

$$
\sum_{i=a}^{b} F(i)=0 \text { for } a>b .
$$

4.

$$
\prod_{i=a}^{b} F(i)=1 \quad \text { for } \quad a>b .
$$

5. $B_{1}=1 / 6, B_{2}=-1 / 30, B_{3}=1 / 42$, etc., are the non-zero Bernoulli numbers.
6. $\quad g_{Q}\left(x_{1}, x_{2}, \cdots, x_{m}\right)=\left[\begin{array}{c}m \\ \prod_{i=1} \\ x_{i}\end{array}\right] \cdot\left[\begin{array}{c}m-1 \\ \prod_{j=1}^{m}\end{array}\binom{x_{j+1}}{x_{j-1}}\right] \cdot\binom{Q+1}{x_{m}-1} \quad$.

For example,

$$
\begin{gathered}
\mathrm{g}_{4}(1)=1^{-1}\binom{5}{0} \\
\mathrm{~g}_{4}(1,3)=(1 \cdot 3)^{-1}\binom{3}{0}\binom{5}{2} \\
\mathrm{~g}_{4}(1,3,4)=(1 \cdot 3 \cdot 4)^{-1}\binom{3}{0}\binom{4}{2}\binom{5}{3} .
\end{gathered}
$$

7.

$$
d_{Q}\left(x_{1}, x_{2}, \cdots, x_{m}\right)=g_{Q}\left(x_{1}, x_{2}, \cdots, x_{m}\right) \cdot n^{x_{1}} .
$$

Theorem 1. Say $Q \geq 0$. Then

$$
(Q+1) S_{Q}=n^{Q+1}+(Q+1) n^{Q}-1+\prod_{i=1}^{Q}\left(1-r_{i}\right),
$$

where

$$
\prod_{\mathrm{i}=2}^{\mathrm{Q}}\left(1-r_{\mathrm{i}}\right)
$$

is expressed in terms of sums of products of the r_{i}, and for each such product, e.g., $r_{x_{1}} \cdot r_{x_{2}} \cdot \cdots \cdot r_{x_{m}}$, where $x_{1}<x_{2}<\ldots<x_{m}$ for $m \geq 2$, we let $r_{X_{1}} \cdot r_{x_{2}} \cdot \ldots \cdot r_{x_{m}}=$ $d Q\left(x_{1}, x_{2}, \cdots, x_{m}\right)$.

Theorem 2. Say $\mathrm{Q} \geq 1$. Then

$$
(2 Q+1) B_{Q}=-r_{1} \prod_{i=2}^{2 Q}\left(1-r_{i}\right)
$$

where

$$
-r_{1} \prod_{i=2}^{2 Q}\left(1-r_{i}\right)
$$

is expressed in terms of sums of products of the r_{i}, and for each such product, e.g., $r_{x_{1}} \cdot r_{x_{2}} \cdot \cdots \cdot r_{x_{m}}$, where $x_{1}<x_{2}<\cdots<x_{m}$ for $m \geq 2$, we let $r_{x_{1}} \cdot r_{x_{2}} \cdot \cdots \cdot r_{x_{m}}=$ $g_{2 Q}\left(x_{1}, x_{2}, \cdots, x_{m}\right)$.

Theorem 3. Say $\mathrm{Q} \geq 1$. Then

$$
(S+1)^{Q}-s^{Q}=(n+1)^{Q}-1
$$

where S^{i} is formally replaced by S_{i} when the left-hand side of this equation is expanded; e.g., $1 \mathrm{~S}_{0}+3 \mathrm{~S}_{1}+3 \mathrm{~S}_{2}=(\mathrm{n}+1)^{3}-1$. Hence, starting with $\mathrm{S}_{0}=\mathrm{n}$, this theorem canbe used to find S_{Q} in a recursive fashion.

Theorem 4.

$$
\begin{gathered}
\mathrm{S}_{1}=\frac{1}{2!}\left|\begin{array}{ll}
1 & \mathrm{n} \\
1 & \mathrm{n}^{2}
\end{array}\right|+\mathrm{n} \\
\mathrm{~S}_{2}=\frac{1}{3!}\left|\begin{array}{lll}
1 & 0 & \mathrm{n} \\
1 & 2 & \mathrm{n}^{2} \\
1 & 3 & \mathrm{n}^{3}
\end{array}\right|+\mathrm{n}^{2} \\
\mathrm{~S}_{3}=\frac{1}{4!}\left|\begin{array}{llll}
1 & 0 & 0 & \mathrm{n} \\
1 & 2 & 0 & \mathrm{n}^{2} \\
1 & 3 & 3 & \mathrm{n}^{3} \\
1 & 4 & 6 & \mathrm{n}^{4}
\end{array}\right|+\mathrm{n}^{3},
\end{gathered}
$$

etc., where the entries in the determinants are binomial coefficients, zeros, and powers of n.

We now illustrate two more methods for finding S_{Q}.

Method 1. The ${ }^{\prime}(i+1)^{\mathrm{Q}}-(\mathrm{i}-1)^{\mathrm{Q}}$ " method. For example,

$$
\begin{array}{ll}
& \sum_{i=1}^{n}\left[(i+1)^{2}-(i-1)^{2}\right]=\sum_{i=1}^{n} 4 i \\
\therefore \quad & (n+1)^{2}+n^{2}-1=\sum_{i=1}^{n} 4 i \cdot \\
\therefore \quad & 4 \sum_{i=1}^{n} i=2 n^{2}+2 n . \\
\therefore \quad & \sum_{i=1}^{n} i=\frac{n^{2}+n}{2}=\frac{n(n+1)}{2} .
\end{array}
$$

Method 2. Lagrange interpolation. Assuming that S_{Q} is a polynomial of degree $Q+$ 1 in n, we now compute S_{1}. Let $f(n)=S_{1}=1+2+\cdots+n$. Then, by Lagrange interpolation, we have $\mathrm{f}(\mathrm{n})=\mathrm{f}(1) \mathrm{P}_{1}+\mathrm{f}(2) \mathrm{P}_{2}+\mathrm{f}(3) \mathrm{P}_{3}$, where, letting $\mathrm{t}_{\mathrm{i}}=\mathrm{i}$,

$$
\begin{aligned}
& P_{1}=\frac{\left(n-t_{2}\right)\left(n-t_{3}\right)}{\left(t_{1}-t_{2}\right)\left(t_{1}-t_{3}\right)}=\frac{(n-2)(n-3)}{(-1)(-2)} \\
& P_{2}=\frac{\left(n-t_{1}\right)\left(n-t_{3}\right)}{\left(t_{2}-t_{1}\right)\left(t_{2}-t_{3}\right)}=\frac{(n-1)(n-3)}{(1)(-1)} \\
& P_{3}=\frac{\left(n-t_{1}\right)\left(n-t_{2}\right)}{\left(t_{3}-t_{1}\right)\left(t_{3}-t_{2}\right)}=\frac{(n-1)(n-2)}{(2)(1)} .
\end{aligned}
$$

Editors' Note: This abstract qualifies for the Fibonacci Note Service. It is an abstract of a paper which is fifty pages long. If you would like a Xerox copy of the entire article at four cents a page (which includes postage, materials and labor), send your request to:

Brother Alfred Brousseau, St. Mary's College, Moraga, California 94575.

