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H-237 Proposed by D. A Millin, High School Student Annville, Pennsylvania, 

Prove 
oo 

E 1 - 7-<j5 
k=0 T 

H-238 Proposed by L Carlitz, Duke University, Durham, North Carolina. 
Sum the series 

oo 

s * Y! xmy"zP • 
m,n,p=0 

where the summation is restricted to m,n,p such that 
m<n*p, n<p + m, p<m + n. 

SOLUTIONS 
FIBONACCI C0MBINAT101 

H-202 Proposed by L Carlitz, Duke University, Durham, North Carolina. 
Put 

I k\ _ FkFk-1 "• Fk-i+1 i k\ = 1 

\'i~ F1F2~Fi • W 

]=-k l ; M 

E (-W i f } L
<hk)2 * ™r°kF,F3 - F2k.t (k even) 

2k . , 

E (-^{?}F^,2 = 24*(k-1iF1F3- F^ (k odd). 

Show that 

(*) 
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310 ADVANCED PROBLEMS AND SOLUTIONS [OCT. 

Solution by the Proposer. 

1. We use the well known identity 
k k-1 

(D ^ - / y M ^ - ' V - n (*-qJx), 
j=0 L J j=0 

where 

f* k l . (1-qk)(1-qk-1)- (1-qk-i+1> 

I ' \ (1-q)l1-q2)-(1-qi) 

Put q = a/ft where a + fi = 1. a/3 = - / . It is easily verified that 

Next, replace k by 2k and * by a1~k$kx. Then (1) becomes 
2k 2k 

(2) IMBf-a/-**1^) = T<-1)ii2k\(a&)v^+1^kxh 

Since 

n (6l-a!-k+1Qk-ix) = JT (-tjiffXfflj* 
i=o i=o * y ' 

n (ah1 -fllxMpI-1 -afx) = (ofi)****'1* U (1-a-**kplx}(f-affi^'x) 
1=1 J=1 

k-1 
= (ap)M(k~7) 0 (1-a!^x)(1-ak-illhk+1x) 

i=o 

2k-1 

= (a$)1Ak(k-1) n (l-a/-k+1pk-J'x) . 
i=o 

(2)reduces to 

J2 f-f)XJ0-W*f 2k\x
j = (~l)1/^k'1^ n fo^ - 0 W ~ * - afx) 

I=o ' 7 ' 1=1 

k 

s (_vr2k(k-D n ((-ni-i-L^x+t-nix2). 
1=1 

Hence for x = / we get 
2k 

(3) 
/=0 x ' 1=1 

while for x = —1, 
2k ( s k 

(4) 

2k I \ k 

J2 (--f)*l(hiMk )2ki = {_1}%k(k+D n L2ji / 

J2 (-DWU+D+ik hk) s f_fyAk(k+i) n £ ^ 
/=0 * ; ' 1=1 

Finally, replacing / by j + k, (3) and (4) become 
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i=-k v ' j=i 
respectively. This completes the proof of (*) 

2. To prove (**}, we use Gauss's identity 

(5) 
2 k mm mm 

TO L J 
= n a~q2H) 

M 

(for proof see for example G.B. Mathews, Theory of Numbers, Stechert, Mew York, 1927, p. 209). Replacing q by 
a/P; we find that (5) reduces to 

2k k 
(6) £ (^J'lf\^k)2 = (-Vk(a-fi}k n F2H 

TO ' J / - / 

Similarly, if q is replaced by |3/a, we get 

2k 
(1) £ M / hk\ o-k)2

 = (__f)k(p__a)k n 2/-f 

When k is even, we add (6) to (7) to get 

2k k 
7%k X ,-#{?} Lihk}2 = 2.5™ n F 2 / . , 

TO x ; / = / 
When k is odd, we subtract (6) from (7) and get 

2k k 

TO l } M 

This completes the proof of (**). 
ON r 

H-205 Proposed by L Carlitz, Duke University, Durham, North Carolina. 

Evaluate the determinants of nth order 

z 1 
- / qz 1 

Dn 
-1 q2z 1 

-1 qn'2z 

- / • tf'1z 

A„-

z / 
- 7 Z (/ 

- / z ^ 

-1 z q 
-1 z 

n-2 

Solution by P. Bruckman, University of Illinois at Chicago, Chicago, Illinois. 

If we expand the last row of each determinant by minors, we may readily obtain the following recursions: 
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(1) Dn = qn~1zD^f + Dn„2 (n > 3); D1 = z; D2 = qz2 + 1 

(2) An = zAl|_/ *qn-2\„2 l* > & Af =z-' A2 = z2 + 1 • 

The first recursion readily admits expression in continued fraction form. Dn is equal to the numerator of the nth 

convergent of the simple continued fraction: 
z + 1/qz + 1/q2z + 1/q2z + - . 

An alternative notation for this infinite simple continued fraction is: 
[z, qz, q2ze q

3z, -, qn~1z, .»/. 
Recursion (2) may also be expressed in continued fraction form, but as it stands, it cannot be expressed in the form 

of a simple continued fraction, i.e., one with continued numerators of unity. If, however, we make the substitution: 

(3) A„ = q%(n2"2n}Cn (n = 1,2,3, -) , 

then (2) reduces to a form similar to that of (1), namely: 

(4) Cn = zq'%(2n'3jCn^ + Cn„2 (n > 3); C«f = zq%; C2 = z2 + U 

Thus, Cn is equal to the numerator of the nth convergent of the simple continued fraction: 

hq\ «,-*, zq-3/4, ..; zc-Wn-V, ...], 

An is then found, by using (3). 

Also solved by the Proposer, 

UNITY OF ROOTS 
H-206 Proposed by Pe Bruckman, University of Illinois, Urbana, Illinois. 

Prove the identity: 
m-.1 

1 s i<y 1 __ ^2km/n 
k=0 

Solution by C. Bridger, Springfield, Illinois 

Let a,b,c, ••• k, - be the n nth roots of unit. Among them, say the kth, is e2km/n. Put x = 1/y and set 
yn - 1 = (y- a)(y - b)(y -c) — (y - k) —. The logarithmic derivative is 

jj£L = -J—+ - J _ . + ...+-1- +.... 
yn - / y-a y-b y-k 

But this is exactly what the identity becomes when x is replaced by 1/y and the extra y is discarded. The next 
and final step is to replace y in the logarithmic derivative with 1/x, discard the extra x and divide both sides by n. 

Also solved by G. Lord and the Proposer. 


