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1. LATIW SQUARES 

A Latin square of order n Is an n x n square in which each of the numbers 0,1, - , n - 1 occurs exactly once. 
in each row and exactly once in each column. For example 

0 1 0 12 0 12 3 

10 12 0 12 3 0 

2 0 1 2 3 0 1 

3 0 12 

are Latin squares of order 2,3,4, respectively. Two Latin squares of order n are orthogonal, if when one is super-
imposed on the other, every ordered pair 00, 01, —,n - 1 n - 1 occurs. Thus 

0 12 0 12 0 0 1 1 2 2 

12 0 and 2 0 1 superimpose to 12 2 0 0 1 

2 0 1 12 0 2 1 0 2 10 

and therefore are orthogonal squares of order 3. A set of Latin squares of order n is orthogonal if every two of them 
are orthogonal. As an example the 4 x 4 square of triples 

0 0 0 
1 2 3 
2 3 1 
3 1 2 

1 1 1 
0 3 2 
3 2 0 
2 0 3 

2 2 2 
3 0 1 
0 1 3 
1 3 0 

3 3 3 
2 1 0 
1 0 2 
0 2 1 

represents three mutually orthogonal squares of order 4 since each of the 16 pairs 00, 01, — , 33 occurs in each of 
the three possible positions among the 16 triples. 

There cannot exist more than n - 1 mutually orthogonal Latin squares of order n, and the existence of such a 
complete system is equivalent to the existence of a finite projective plane of order n, that is a system of n +n + 

1 points and n2 + n + 1 lines with n + 1 points on each line. If n is a power of a prime there exist finite fields of 
order n which can be used to construct finite projective planes of order n. So# for n = 2,3, 4,. 5,7, 8, 9 there ex-
ist complete systems of n - 1 orthogonal Latin squares of order n. We have listed the examples n= 2,3,4, above. 
It is known [2] that there are no orthogonal Latin squares of order 6 and that there are at Least two orthogonal Latin 
squares of every order n>2, n *6. In fact, the number of mutually orthogonal Latin squares of order n goes to 
infinity with n [3 ] . However no case of a complete system of n - / orthogonal Latin squares is known for any n 

which is not a power of a prime. 
2. L A T i l CUBES 

We can generalize all these concepts to nxnxn cubes and cubes of higher dimensions. 
A Latin cube of order n is an n x n x n cube (n rows, n columns and n files) in which the numbers 0,1,.—, 

n — 1 are entered so-that each number occurs exactly once in each row, column and file. If we list the cube in terms 
of the n squares of order n which form its different levels we can list the cubes 
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0 1 2 
1 2 0 
2 0 1 

1 2 0 
2 0 1 
0 1 2 

2 0 1 
0 1 2 
1 2 0 

0 1 1 0 A 

and 
10 Of 

as Latin cubes of order two and three, respectively. Since even this method of listing becomes unwieldy for higher 
dimensions we also use a listing by indices. Thus we write the first cube as A = (a^) with agoo = t agio - 1, 
3oii = 0, 3ioo= f, aioi^O, afio= 0* am = 1- In a similar manner we can describe four-dimensional cubes 
A = (a/j/fz) or order n, where each of the indices, ij,k,& ranges from / to n. Generally we can discusser-cubes 
A = (aij2—jk) with k indices ranging from 1 to n. These cubes will be Latin /r-cobes of order n if each of the 
nk entries a-lv^k is one of the numbers 0,1, - , n - / so that a^...^ ranges over all these numbers as one of the 
indices varies from / to n while the other indices remain fixed. 

Orthogonality of Latin cubes is now a relation among three cubes, or in genera! among k Latin k-mbes. That is, 
three Latin cubes of order n are orthogonal if, when superimposed, each ordered triple will occur. Similarly k Latin 
Ar-cubes are orthogonal if, when superimposed, each ordered Ar-tuple will occur. A set of at least k Latin Ar-cubes is 
orthogonal if every k of its cubes are orthogonal. 

Theorem, If there exist two orthogonal Latin squares of order n then there exist 4 orthogonal Latin cubes of 
order n and k orthogonal Latin Ar-cubes for each k >3e 

Proof. Let A = (ajj), B = (b/j) be orthogonal Latin squares of order /?„ 
Define 4 cubes C, D, E, F of order n by 

cfjk = 3a.lhk, dfjk = abij.fk, Cjjk = ba..gk, fjjk = bbjjtk, i,j,k = 0,1, -,n- f. 

Note that the squares A,B are used both as entries and as indices in the construction of the cubes. For example the 
pair of 3 x 3 Latin squares 

0 0 11 2 2 
12 2 0 Of 
2 f 0 2 10 

leads to the four 3x3x3 cubes 
0 12 12 0 2 0 1 

C: 12 0 2 0 1 0 12 
2 0 1 0 12 12 0 

0 12 12 0 2 0 1 
D: 2 0 1 0 12 12 0 

12 0 2 0 1 0 12 

0 2 1 10 2 2 10 
E: 2 10 0 2 1 1 0 2 

10 2 2 10 0 2 1 

0 2 1 10 2 2 10 
F: 10 2 2 10 0 2 1 

2 10 0 2 1 10 2 

Superimposed these lead to a cube of quadruples 
CDEF: OOOO 1122 2211 1111 2200 0022 2222 0011 1100 

1221 2010 0102 2002 0121 1210 0110 1202 2021 
2112 0201 1020 0220 1012 2101 1001 2120 0212 

where each ordered triple occurs in every one of the four possible positions in the quadruples. 
It is easy to see that C,D,E,F are Latin cubes. For example, for fixed ij the values Cfjk=aaf.k go through the 

ajfh row of A, that is, through the values 0,1, —, n - t For fixed i,k the index a^ goes tnrough all the values 
in the / row of- A, that is, through all values 0,1, —, n—1 and hence cyik goes through all values in the kth 

column of A Finally for fixed j,k the index a,y goes through all values in the jth column of A and therefore 
c/jk again goes through ali values in the kf^ column of A. 

To prove the orthogonality of, say, C,D,E we have to prove that for every triple (x,y^) from | 0,1, —, n- 1 \ 
the equations 

Cjjk = x, djjk = y, eijk = z 
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have a solution ij,k. By the orthogonality of A and B the pair (x^) occurs exactly once in the superimposed 
square AB so that the equations a%fk=x, b%k=z determine k and c. Thus the equations 

cijk = aay,k = x and *#y* = baj.k = z 

determine ay and k. Mow, since A is a Latin square, there is exactly one occurrence of y in the kth column of 
A so the equation 

dijk = aby,k = V 
determines by and the pair (ajj,hjj) determines ij; 

Thus for every triple (x,y,z) there is a unique triple (ij,k). 
This construction is essentially that given by Arkin for 4 orthogonal 10 x 10 x 10 cubes [1]. 
To prove the last part of the theorem we proceed by induction on k. Let A \ - , Ak be orthogonal Latin ̂ -cubes 

of order n, and write the entries of AJ" as s/r....,-.. We now define k+ 1 orthogonal Latin (k+ /j-cubes B1, —, 
5*+' by , ' " * 

/? . . = a 1 
'/>">/*+/ al1,-,ikJk+1 

bh,~JkH = 8-k 

hk+1 - h 
aih-~>ik<ik+1 

We omit the proof that the # are Latin cubes, which is the same as before. In order to prove orthogonality we 
have to solve 

B'- • = *i I = 1, -,k+1 . 

For any (k+1)-tup\e (xf, ~-,xk+f) from I 0,1, ••> n - If. Mow, by the orthogonality of A and B the two 
equations 

A 1 = xj, B 1 m = xk+1 
ah,~;tk>'k+i 

determine ajr..,k and ik+j. Once ik+i is determined the equations 

,'-ik''k+1 

^1^ik 0 = 2,-,kl 

A j . = xj j = 2, 

determine 

Once the elements 
a'ir.,k (l=h-M) 

are determined it follows from the orthogonality of the £-cubes A1, -, A that the indices //, —, ik are determined. 
Thus for every (k+1)-tup\e (xf, —,xk+i) there is a unique (k+1)-tup\e (if, •-, ik+f) with 

Bi . = Xj / = 1,-,k+1. 
®1~!k+1 J 

Since, as we mentioned, there are orthogonal Latin squares of every order n>2, n ¥=6 we have the following. 
Corollary. There exist orthogonal ^-tuples of Latin ̂ r-cubes of order n for every n>2, n # 6. 

3. FIWITE FIELDS 
A field is a system of elements closed under the rational operations of addition, subtraction, multiplication and 

division (except by 0) subject to the usual commutative, associative and distributive laws. There exist finite fields 
with n elements if and only if n is a power of a prime p. The prime p h the characteristic of the field and we 
have pa= 0 for every a in the field. Following are the addition and multiplication tables for the fields with 3 and 
4 elements: 

+ 

0 
f 
2 | 

]0 / 2 

0 1 2 
1 2 0 
2 0 1 

X 

0 
1 
2 

0 1 2 
OOO 
0 1 2 
0 2 1 
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+ 

0 
1 
a 

1 + a 

0 

0 
1 
a 

1 + a 

1 

1 
0 

1+a 
a 

a 

a 
1+a 

0 
1 

1 + a 

1 + a 
a 
1 
0 

X 

0 
1 
a 

1+a 

0 

0 
0 
0 
0 

1 

0 
1 
a 

1 + a 

a 

0 
a 

1+a 
1 

1 + a 

0 
1+a 

1 
a 

If there is a field Fn with n elements, that is if /i is a power of a prime, we use the elements { f1f f^ - , fn\ 
of Fn as indices to construct Latin squares, cubes, etc. We give the construction for cubes, but the generalization to 
£-cubes is easily seen. 

Let a, p, 7 be three nonzero elements of Fn then w&can define the Latin cube A = (a;jk) by 
am = afi + Pfj + fiffc . 

To see that A is a Latin cube consider, say, fixed /;/ and see that yfk runs through all elements of Fn as fk does. 
Hence afjk runs through Fn as k= 1, -,n. 

Mow let l%P,y), (a',P',y') and (a",P",y") be three triples of nonzero elements of Fn so that the determinant 
\a P y 
\a' P' y'\*0. 
U" 0" y" 

Then the three Latin cubes 

with 
(agjkK ^= fay, A <*W 

a}jk = af1 + Pfj + yfk, afa = a?, + P'f/ + y'fk, a'fa = a"f,- + P"ff + j'% 

are orthogonal. This follows from the fact that for any triple (x,y,z) from Fn the three equations 

aijk = x* a'ijk = V, a'fjk = z 

have a unique solution fj,fj,fk. 
Wow the Vandermonde determinants 

/ a of 
1 p p2 = (P-a)(y-a)(y-P) 

\1 7 T 2 ! 
are different from zero for any three distinct elements a,j3,Y of Fn. Thus, letting a run through the nonzero ele-
ments of Fn we get n - 1 orthogonal Latin cubes of order n, 

Aa=(a%h a% = fi + afI + a% . 

The construction for a system of n - / orthogonal Latin /r-cubes of order n proceeds in exactly the same way if we 
set 

Aa = (afr.,kK a%...,k = fh * afi2+ - * a*"'' f,k 

where a runs through the nonzero elements of Fn. 
Theorem. If n is a power of a prime and k<n, then there exists a system of n - / orthogonal /r-cubes of order n. 
Our previous examples constructing four orthogonal cubes of orders 3 and 4 show that/? - / is not necessarily the 

maximal number of orthogonal Ar-cubes of order/? for k >2. However, the orthogonal cubes constructed with the aid 
of finite fields satisfy additional properties. For each fixed value of k the squares 

A% = (a%) U = hl-,n 

form a complete system of n - 1 orthogonal Latin squares as a ranges through the nonzero elements of Fn, mi 
similarly for each fixed / the squares 

(»m> j,k = 1,2, -,n 

form a complete system of orthogonal Latin squares. If n is a power of 2 then the third family of cross-sections 

A%=(afjk) i,k=1,2,-,n 
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form a complete system of orthogonal Latin squares for each fixed J, while for n odd we get a system of (n - 1)/2 
orthogonal Latin squares, each square occurring twice. 

Theorem. If n is a power of 2 then there exist n—1 orthogonal Latin cubes of order n with the propeftythat 
the corresponding plane sections form systems of n - 1 orthogonal Latin squares. 

If n is a power of an odd prime then there exist n - 1 orthogonal Latin cubes with the property that the corres-
ponding plane cross-sections in two directions form complete systems of orthogonal Latin squares, while the plane 
cross-sections in the third direction form a system of (n - / j /? orthogonal Latin squares, each square occurring twice. 

Finally we observe that if we have orthogonal r̂-cubes of orders m and n then we can form their Kronecker 
products to obtain orthogonal Ar-cubes of order mn. That is from orthogonal £-cubes 

A' = (a]r.,kK -,A* - (a)r.,k); B1 - ft/,...,^, - , Bs - (h^K 

where the a's run from 1 to m and the b's from 1 to n we can form the orthogonal Ar-cubes C1, —, £e , where 

^ - ^ # r V -d clr.,r(air.,k,bjr..kI 
so that the c's run through all ordered pairs (1,1), —, (m,n) as the pairs d'lJj),—, O'kJk) rurs through these 
ordered pairs. Thus we have the following. 

Corollary. If 

then for any k < g there exist at least q-1 orthogonal Latin Ar-cubes of order n. 
The relation to finite Ar-dimensional projective spaces is not as immediate as it is for Latin squares, and we shall 

not discuss it here. 
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ON EXTENDING THE FIBONACCI NUMBERS TO THE NEGATIVE INTEGERS 

M.G.MONZINGO 
Southern Methodist University, Dallas, Texas 75275 

A sequence of positive integers defined by the formula 

(1) xn+f = axn+bxn„i, n a positive integer, 
is said to be extendable to the negative integers if (1) holds for n any integer. See page 28 of [1] . The purpose of 
this note is to show that the Fibonacci numbers form a sequence which is extendable to the negative integers in a 
unique way. In this note only nontrivial integral sequences will be considered. 

[Continued on Page 308.] 


