LATIN k-CUBES

JOSEPH ARKIN
197 Old Nyack Turnpike, Spring Valley, New York 10977
and
E. G. STRAUS
University of California, Los Angeles 90024

1. LATIN SQUARES

A Latin square of order n is an $n \times n$ square in which each of the numbers $0,1, \cdots, n-1$ occurs exactly once. in each row and exactly once in each column. For example

0	1	0	1	2	0	1	2	3
1	0	1	2	0	1	2	3	0
		2	0	1	2	3	0	1
					3	0	1	2

are Latin squares of order 2,3,4, respectively. Two Latin squares of order n are orthogonai, if when one is superimposed on the other, every ordered pair $00,01, \cdots, n-1 n-1$ occurs. Thus

0	1	2							
1	2	0							
2	0	1	\quad and \quad	0	1	2			
:---	:---	:---							
2	0	1							
1	2	0	\quad superimpose to \quad	0	0	1	1	2	2
:---	:---	:---	:---	:---	:---				
1	2	2	0	0	1				
2	1	0	2	1	0				

and therefore are orthogonal squares of order 3. A set of Latin squares of order n is orthogonal if every two of them are orthogonal. As an example the 4×4 square of triples

0	0	0	1	1	1	2	2	2		3	3
3											

represents three mutually orthogonal squares of order 4 since each of the 16 pairs $00,01, \ldots, 33$ occurs in each of the three possible positions among the 16 triples.
There cannot exist more than $n-1$ mutually orthogonal Latin squares of order n, and the existence of such a complete system is equivalent to the existence of a finite projective plane of order n, that is a system of $n^{2}+n+$ 1 points and $n^{2}+n+1$ lines with $n+1$ points on each line. If n is a power of a prime there exist finite fields of order n which can be used to construct finite projective planes of order n. So, for $n=2,3,4,5,7,8,9$ there exist complete systems of $n-1$ orthogonal Latin squares of order n. We have listed the examples $n=2,3,4$, above. It is known [2] that there are no orthogonal Latin squares of order 6 and that there are at least two orthogonal Latin squares of every order $n>2, n \neq 6$. In fact, the number of mutually orthogonal Latin squares of order n goes to infinity with n [3]. However no case of a complete system of $n-1$ orthogonal Latin squares is known for any n which is not a power of a prime.

2. LATIN CUBES

We can generalize all these concepts to $n \times n \times n$ cubes and cubes of higher dimensions.
A Latin cube of order n is an $n \times n \times n$ cube (n rows, n columns and n files) in which the numbers $0,1, \cdots$, $n-1$ are entered so that each number occurs exactly once in each row, column and file. If we list the cube in terms of the n squares of order n which form its different levels we can list the cubes

0	1	1	0								
1	0	0	1	\quad and \quad	0	1	2	1	2	0	2
:---	:---	:---	:---	:---	:---	:---	$0 \quad 1$				

as Latin cubes of order two and three, respectively. Since even this method of listing becomes unwieldy for higher dimensions we also use a listing by indices. Thus we write the first cube as $A=\left(a_{i j k}\right)$ with $a_{000}=1, a_{010}=1$, $a_{011}=0, a_{100}=1, a_{101}=0, a_{110}=0, a_{111}=1$. In a similar manner we can describe four-dimensional cubes $A=\left(a_{i j k \ell}\right)$ or order n, where each of the indices, $i_{\rho} j_{\rho} k_{\rho} \ell$ ranges from 1 to n. Generally we can discuss k-cubes $A=\left(a_{j, i} \cdots i_{k}\right)$ with k indices ranging from 1 to n. These cubes will be Latin k-cobes of order n if each of the n^{k} entries $a_{i} \cdots i_{k}$ is one of the numbers $0,1, \cdots, n-1$ so that $a_{i p_{1} \ldots i_{k}}$ ranges over all these numbers as one of the indices varies from 1 to n while the other indices remain fixed.
Orthogonality of Latin cubes is now a relation among three cubes, or in general among k Latin k-cubes. That is, three Latin cubes of order n are orthogonal if, when superimposed, each ordered triple will occur. Similarly k Latin k-cubes are orthogonal if, when superimposed, each ordered k-tuple will occur. A set of at least k Latin k-cubes is orthogonal if every k of its cubes are orthogonal.
Theorem. If there exist two orthogonal Latin squares of order n then there exist 4 orthogonal Latin cubes of order n and k orthogonal Latin k-cubes for each $k>3$.
Proof. Let $A=\left(a_{i j}\right), B=\left(b_{i j}\right)$ be orthogonal Latin squares of order n.
Define 4 cubes C, D, E, F of order n by

$$
c_{i j k}=a_{a i j ; k}, d_{i j k}=a_{b_{i j}, k}, c_{i j k}=b_{a i j, k}, f_{i j k}=b_{b_{i j}, k}, i_{i j}, k=0,1, \cdots, n-1
$$

Note that the squares A, B are used both as entries and as indices in the construction of the cubes. For example the pair of 3×3 Latin squares

0	0	1	1	2	2
1	2	2	0	0	1
2	1	0	2	1	0

leads to the four $3 \times 3 \times 3$ cubes
$\left.\begin{array}{llllllllll} \\ \text { C: } & 0 & 1 & 2 & 1 & 2 & 0 & 2 & 0 & 1 \\ & 1 & 2 & 0 & 2 & 0 & 1 & & 0 & 1 \\ 2\end{array}\right)$

Superimposed these lead to a cube of quadruples

CDEF:	0000	1122	2211	1111	2200	0022	2222	0011	1100
	1221	2010	0102	2002	0121	1210	0110	1202	2021
	2112	0201	1020	0220	1012	2101	1001	2120	0212

where each ordered triple occurs in every one of the four possible positions in the quadruples.
It is easy to see that C, D, E, F are Latin cubes. For example, for fixed i, j the values $C_{i j k}=a_{a i j} k$ go through the $a_{i j}^{\text {th }}$ row of A, that is, through the values $0,1, \cdots, n-1$. For fixed i, k the index $a_{i j}$ goes through all the values in the $i^{\text {th }}$ row of A, that is, through all values $0,1, \cdots, n-1$ and hence $c_{i j k}$ goes through all values in the $k^{\text {th }}$ column of A. Finally for fixed $j_{c} k$ the index $a_{i j}$ goes through all values in the $j j^{\text {th }}$ column of A and therefore $c_{i j k}$ again goes through all values in the $k^{\text {th }}$ column of $A_{\text {。 }}$
To prove the orthogonality of, say, C, D, E we have to prove that for every triple (x, y, z) from $\{0,1, \cdots, n-1\}$ the equations

$$
c_{i j k}=x, \quad d_{i j k}=v_{0} \quad e_{i j k}=z
$$

have a solution i, j, k. By the orthogonality of A and B the pair (x, z) occurs exactly once in the superimposed square $A B$ so that the equations $a_{\ell, k}=x, b_{\ell, k}=z$ determine k and ℓ. Thus the equations

$$
c_{i j k}=a_{a_{i j}, k}=x \quad \text { and } \quad e_{i j k}=b_{a_{i j}, k}=z
$$

determine $a_{i j}$ and k. Now, since A is a Latin square, there is exactly one occurrence of y in the $k^{t h}$ column of A so the equation

$$
d_{i j k}=a_{b_{i j}, k}=\gamma
$$

determines $b_{i j}$ and the pair ($a_{i j}, b_{i j}$) determines i, j;
Thus for every triple (x, y, z) there is a unique triple (i, j, k).
This construction is essentially that given by Arkin for 4 orthogonal $10 \times 10 \times 10$ cubes [1].
To prove the last part of the theorem we proceed by induction on k. Let A^{1}, \cdots, A^{k} be orthogonal Latin k-cubes of order n, and write the entries of A^{j} as $a_{i j}^{j}, \cdots, i_{k}$. We now define $k+1$ orthogonal Latin $(k+1)$-cubes B^{1}, \cdots, B^{k+1} by

$$
\begin{aligned}
& b_{i_{1}, \cdots, i_{k+1}}^{1}=a_{a 1_{1}}, \cdots, i_{k}, i_{k+1} \\
& \vdots \\
& b_{i_{1}, \cdots, i_{k+1}}^{k}=a_{a_{i}^{k}}^{k}, \cdots, i_{k}, i_{k+1} \\
& b_{i_{1}, \cdots, i_{k+1}}^{k+1}=b_{a_{i_{1}}, \cdots, i_{k}, i_{k+1}}
\end{aligned}
$$

We omit the proof that the B^{j} are Latin cubes, which is the same as before. In order to prove orthogonality we have to solve

$$
B_{i_{1} \cdots i_{k+1}}^{j}=x_{j} \quad j=1, \cdots, k+1 .
$$

For any $(k+1)$-tuple $\left(x_{1}, \cdots, x_{k+1}\right)$ from $\{0,1, \cdots, n-1\}$. Now, by the orthogonality of A and B the two equations

$$
A_{a_{i_{1}, \cdots, i_{k}}^{1} i_{k+1}}=x_{1}, \quad B_{a_{i_{1}}^{1}, \cdots, i_{k+1}, i_{k+1}}=x_{k+1}
$$

determine $a_{i_{1} \cdots i_{k}}^{1}$ and i_{k+1}. Once i_{k+1} is determined the equations

$$
A_{d_{i j}, \cdots, i_{k}, i_{k+1}}=x_{j} \quad j=2, \cdots, k
$$

determine

$$
a_{i 1 \ldots i_{k}}^{j} \quad(j=2, \cdots, k)
$$

Once the elements

$$
a_{i_{1} \cdots i_{k}}^{j} \quad(j=1, \cdots, k)
$$

are determined it follows from the orthogonality of the k-cubes A^{1}, \cdots, A^{k} that the indices i_{1}, \cdots, i_{k} are determined. Thus for every $(k+1)$-tuple $\left(x_{1}, \cdots, x_{k+1}\right)$ there is a unique $(k+1)$-tuple (i_{1}, \cdots, i_{k+1}) with

$$
B_{i_{1} \cdots i_{k+1}}^{j}=x_{j} \quad j=1, \cdots, k+1
$$

Since, as we mentioned, there are orthogonal Latin squares of every order $n>2, n \neq 6$ we have the following.
Corollary. There exist orthogonal k-tuples of Latin k-cubes of order n for every $n>2, n \neq 6$.

3. FINITE FIELDS

A field is a system of elements closed under the rational operations of addition, subtraction, multiplication and division (except by 0) subject to the usual commutative, associative and distributive laws. There exist finite fields with n elements if and only if n is a power of a prime p. The prime p is the characteristic of the field and we have $p a=0$ for every a in the field. Following are the addition and multiplication tables for the fields with 3 and 4 elements:

+	012	x	012
0	012	0	00
1	120	1	012
2	201	2	02

If there is a field F_{n} with n elements, that is if n is a power of a prime, we use the elements $\left\{f_{1}, f_{2}, \cdots, f_{n}\right\}$ of F_{n} as indices to construct Latin squares, cubes, etc. We give the construction for cubes, but the generalization to k-cubes is easily seen.

Let a, β, γ be three nonzero elements of F_{n} then we can define the Latin cube $A=\left(a_{i j k}\right)$ by

$$
a_{i j k}=a f_{j}+\beta f_{j}+\beta f_{k}
$$

To see that A is a Latin cube consider, say, fixed i, j and see that γf_{k} runs through all elements of F_{n} as f_{k} does. Hence $a_{i j k}$ runs through F_{n} as $k=1, \cdots, n_{\text {o }}$
Now let $(a, \beta, \gamma),\left(a^{\prime}, \beta^{\prime}, \gamma^{\prime}\right)$ and ($\left.a^{\prime \prime}, \beta^{\prime \prime}, \gamma^{\prime \prime}\right)$ be three triples of nonzero elements of F_{n} so that the determinant

$$
\left|\begin{array}{lll}
a & \beta & \gamma \\
a^{\prime} & \beta^{\prime} & \gamma^{\prime} \\
a^{\prime \prime} & \beta^{\prime \prime} & \gamma^{\prime \prime}
\end{array}\right| \neq 0
$$

Then the three Latin cubes

$$
A=\left(a_{i j k}\right), \quad A^{\prime}=\left(a_{i j k}^{\prime}\right), \quad A^{\prime \prime}=\left(a_{i j k}^{\prime \prime}\right)
$$

with

$$
a_{i j k}=a f_{1}+\beta f_{j}+\gamma f_{k}, \quad a_{i j k}^{\prime}=a^{\prime} f_{i}+\beta^{\prime} f_{j}+\gamma^{\prime} f_{k}, \quad a_{i j k}^{\prime \prime}=a^{\prime \prime} f_{j}+\beta^{\prime \prime} f_{j}+\gamma^{\prime \prime} f_{k}
$$

are orthogonal. This follows from the fact that for any triple $\left(x_{,}, y_{,}\right)$from F_{n} the three equations

$$
a_{i j k}=x, \quad a_{i j k}^{\prime}=y, \quad a_{i j k}^{\prime \prime}=z
$$

have a unique solution f_{i}, f_{j}, f_{k}.
Now the Vandermonde determinants

$$
\left|\begin{array}{lll}
1 & a & a^{2} \\
1 & \beta & \beta^{2} \\
1 & \gamma & \gamma^{2}
\end{array}\right|=(\beta-a)(\gamma-a)(\gamma-\beta)
$$

are different from zero for any three distinct elements a, β, γ of F_{n}. Thus, letting a run through the nonzero elements of F_{n} we get $n-1$ orthogonal Latin cubes of order n,

$$
A^{a}=\left(a_{i j k}^{a}\right), \quad a_{i j k}^{a}=f_{i}+a f_{j}+a^{2} f_{k} .
$$

The construction for a system of $n-1$ orthogonal Latin k-cubes of order n proceeds in exactly the same way if we set

$$
A^{a}=\left(a_{i 1} \cdots i_{k}\right)_{,} \quad a_{i_{1} \cdots i_{k}}^{a}=f_{i_{1}}+a f_{i_{2}}+\cdots+a^{k-1} f_{i_{k}}
$$

where a runs through the nonzero elements of F_{n}.
Theorem. If n is a power of a prime and $k<n$, then there exists a system of $n-1$ orthogonal k-cubes of order n.
Our previous examples constructing four orthogonal cubes of orders 3 and 4 show that $n-1$ is not necessarily the maximal number of orthogonal k-cubes of order n for $k>2$. However, the orthogonal cubes constructed with the aid of finite fields satisfy additional properties. For each fixed value of k the squares

$$
A_{\bullet \circ k}^{a}=\left(a_{i j k}^{a}\right) \quad i, j=1,2, \cdots, n
$$

form a complete system of $n-1$ orthogonal Latin squares as a ranges through the nonzero elements of F_{n}, and similarly for each fixed i the squares

$$
A_{j \circ 0}^{a}=\left(a_{i j k}^{a}\right) \quad j, k=1,2, \cdots, n
$$

form a complete system of orthogonal Latin squares. If n is a power of 2 then the third family of cross-sections

$$
A_{i j 0}^{a}=\left(a_{i j k}^{a}\right) \quad i, k=1,2, \cdots, n
$$

form a complete system of orthogonal Latin squares for each fixed $;$, while for n odd we get a system of $(n-1) / 2$ orthogonal Latin squares, each square occurring twice.
Theorem. If n is a power of 2 then there exist $n-1$ orthogonal Latin cubes of order n with the propertythat the corresponding plane sections form systems of $n-1$ orthogonal Latin squares.
If n is a power of an odd prime then there exist $n-1$ orthogonal Latin cubes with the property that the corresponding plane cross-sections in two directions form complete systems of orthogonal Latin squares, while the plane cross-sections in the third direction form a system of $(n-1) / 2$ orthogonal Latin squares, each square occurring twice.
Finally we observe that if we have orthogonal k-cubes of orders m and n then we can form their Kronecker products to obtain orthogonal k-cubes of order $m n$. That is from orthogonal k-cubes

$$
A^{1}=\left(a_{i_{1} \cdots i_{k}}^{1}\right), \cdots, A^{\ell}=\left(a_{i_{1} \cdots i_{k}}^{\ell}\right) ; \quad B^{1}=\left(b_{i_{1} \cdots i_{k}}^{1}\right), \cdots, \quad B^{\ell}=\left(b_{i_{1} \cdots i_{k}}^{\ell}\right),
$$

where the $a^{\prime} s$ run from 1 to m and the $b^{\prime \prime} s$ from 1 to n we can form the orthogonal k-cubes C^{1}, \cdots, c^{ℓ}, where

$$
c^{j}=\left(c_{i_{1} \cdots i_{k}}^{j}\right) \quad \text { and } \quad c_{i_{1} \cdots i_{k}}^{j}=\left(a_{i_{1} \cdots i_{k}}^{j}, b_{j_{1} \cdots j_{k}}^{j}\right)
$$

so that the c's run through all ordered pairs $(1,1), \cdots,(m, n)$ as the pairs $\left(i_{1}, i,\right)_{1} \cdots,\left(i_{k}, i_{k}\right)$ run through these ordered pairs. Thus we have the following.
Corollary. If

$$
n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{s}^{\alpha_{s}} \quad \text { and } \quad q=\min _{1 \leqslant j \leqslant s} p_{j}^{\alpha_{j}}
$$

then for any $k<q$ there exist at least $q-1$ orthogonal Latin k-cubes of order n.
The relation to finite k-dimensional projective spaces is not as immediate as it is for Latin squares, and we shall not discuss it here.

REFERENCES

1. J. Arkin, "A Solution to the Classical Problem of Finding Systems of Three Mutually Orthogonal Numbers in a Cube Formed by Three Superimposed $10 \times 10 \times 10$ Cubes," The Fibonacci Quarterly, Vol. 12, No. 2 (April 1974) pp. 133-140. Also, Sugaku Seminar, 13 (1974), pp. 90-94.
2. R.C. Bose, S.S. Shrikhande, and E.T. Parker, "Further Results on the Construction of Mutually Orthogonal Latin Squares and the Falsity of Euler's C'onjecture," Canadian J. Math., 12 (1960), pp. 189-203.
3. S. Chowla, P. Erdös and E.G. Straus, "On the Maximal Number of Pair-wise Orthogonal Latin Squares of a Given Order," Canadian J. Math., 12 (1960), pp. 204-208.
4. J. Arkin and V.E. Hoggatt, Jr., "The Arkin-Hoggatt Game and the Solution of a Classical Problem," Jour. Recreational Math., Vol. 6, No. 2 (Spring, 1973), pp. 120-122.

This research was supported in part by NSF Grant No. GP-28696.
(1)

ON EXTENDING THE FIBONACCI NUMBERS TO THE NEGATIVE INTEGERS

M. G. MONZINGO
Southern Methodist University, Dallas, Texas 75275

A sequence of positive integers defined by the formula

$$
\begin{equation*}
x_{n+1}=a x_{n}+b x_{n-1}, \quad n \text { a positive integer, } \tag{1}
\end{equation*}
$$

is said to be extendable to the negative integers if (1) holds for n any integer. See page 28 of [1]. The purpose of this note is to show that the Fibonacci numbers form a sequence which is extendable to the negative integers in a unique way. In this note only nontrivial integral sequences will be considered.
[Continued on Page 308.]

