CORRIGENDUM TO: ENUMERATION OF TWO-LINE ARRAYS

L. CARLITZ and MARGARET HODEL

Duke University, Durham, North Carolina 27706

The proof of (2.5) and (2.7) in the paper: "Enumeration of Two-Line Arrays" [1] is incorrect as it stands. A corrected proof follows.

Let $g(n, k)$ denote the number of two-line arrays of positive integers

a_{1}	a_{2}	\cdots	a_{n}
b_{1}	b_{2}	\cdots	b_{n}

satisfying the inequalities

$$
\begin{array}{ll}
\max \left(a_{j}, b_{i}\right) \leqslant \min \left(a_{i+1}, b_{i+1}\right) & (1 \leqslant i<n), \\
\max \left(a_{i}, b_{i}\right) \leqslant i & (1 \leqslant i<n)
\end{array}
$$

and

$$
\max \left(a_{n}, b_{n}\right)=k .
$$

We wish to show that

$$
\begin{equation*}
g(n+k, k)=\sum_{j=1}^{k} g(j, j) g(n+k-j, k-j+1) \quad(n \geqslant 1) . \tag{2.7}
\end{equation*}
$$

Let j be the greatest integer $\leqslant k$ such that

$$
\max \left(a_{j}, b_{j}\right)=j .
$$

It follows that $a_{j+1}=b_{j+1}=j$.
Consider the array

$$
\begin{array}{|ccc|ccc|}
\hline a_{1} & \cdots & j & j & \cdots & k \\
1 & \cdots & \cdot & j & \cdots & \cdot \\
\hline
\end{array}
$$

Put

$$
\begin{aligned}
& a_{i}^{\prime}=a_{j+i}-(j-1) \\
& b_{i}^{\prime}=b_{j+i}-(j-1) \quad(1 \leqslant i \leqslant n+k-j) .
\end{aligned}
$$

It follows from the conditions satisfied by a_{i}, b_{i} that

$$
\begin{array}{ll}
\max \left(a_{i}^{\prime}, b_{i}^{\prime}\right) \leqslant \min \left(a_{i+1}^{\prime}, b_{i+1}^{\prime}\right) & (1 \leqslant i<n+k-j), \\
\max \left(a_{i}^{\prime}, b_{i}^{\prime}\right) \leqslant i & (1 \leqslant i \leqslant n+k-j), \\
\max \left(a_{n+k-j}^{\prime}, b_{n+k-j}^{\prime}\right)=k-j+1 . &
\end{array}
$$

This evidently yields (2.7).

REFERENCE

1. L. Carlitz, "Enumeration of Two-Line Arrays," The Fibonacci Quarterly, Vol. 11, No. 2 (April 1973), pp. 113130.
