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We have seen in a previous episode [3] some of the artful disguises of the Moriarty identities. With skillful de-
tective work we may unmask fVSoriarty in many situations. The ease we. are about to discuss arose in a study of ques-
tions asked me by David Zeitlin (personal correspondence of 9 August 1972), and reveals Moriarty in a fourfold 
fantasy; for there are actually a full dozen formulas to be analyzed. As corollaries we find other interesting sums. The 
objective in our study is pedagogical, viz. to show how to handle IVloriarty. But let us hear Zeitlin's question. 

"Are the following two related identities, 

m-7 

m~1 

G> E (;)(m%\-1)<-*>*-<-»m + i + 1 ( s * i ) 2m-7 
m+j 

k=j 

fisted (or special cases) in your tables [4] ?" asked Zeitlin. " I am convinced that (1) and (2) are correct, but I am 
unable to prove it so." 

Zeitlin stumbled onto these formulas as a consequence of several Fibonacci identities. Naturally no set of tables is 
ever complete; but the careful reader will ascertain at once that relation (2) is precisely (3.162) in my tables...pre-
ciseiy upon changing a few letters and shifting m to m+ 7. Relation (1) is not listed. However, relations (3.160) 
and (3.161) are obviously related to (1) and (2) in some manner, as we shall see. 

We are therefore concerned at the outset with the four identities 

(3) E (-»' ( I ) { "*' ) ** = (-»* ( "L8 ) ^ §77 . (3-162) 

E '-«*( * )(**A) 2* = (-»"-'(£?,) 2*. (Zeitlin) (4) 

k=0 

n 

k=0 

n 
(3.160) 

k=0 
and 

(6) ± (-Dk(j) («£*) 2» |±_i = (_ir j n ^ 2 2 . t (3.161). 
k=0 

Here a is a non-negative integer; the range of summation in each case may start with k = a if one prefers, since 
( * ) = 0 for 0 < k < a. However, we state the four in a more elegant form as above. 

Relations (3) and (6) are inverses of each other; this is so because of the easy and well known inversion 
principle that 

300 
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J2 (~1)k[k
a) ffk) = (~1)ng(n) 

if and only if 

n 

12 (~1)k (a) g(k) = (-V"*")-
k=a 

Thus we have only to prove the one to obtain the other. Observe that (4) and (5) are 8fi1f-inYers.es. 
There are various ways to prove (3)—(6) directly; to this we shall give attention. But the main object of our work 

will be to show that these four sums are equivalent to the following four sums: 

o 

2a+1 

m S(M')(-'.)-('i')'*£f. 
K~ (J 

(8) 2 \2kll) ( / ! - / - * ) = \2a++ai) 2 

k=0 

n 
(9) Y k f 2 n \ l k \ I n+a\ ?2a n 

fe\2k)\n-a) =[ 2a ) Z 

k= 

n 

n+a 

2a 

k=0 

These are the four relations of Moriarty. The attentive reader of [3] may at first think we-proved two relations, 
and indeed we did. They were: 

I ' l l 
<"> E ( £ ) ( * ) = 2"'2r'1 ( " 7 r ) W±r • C3.120) m [4] , 

k=0 
and ,-

<12» T,l2
n

kVr)(k
r) = 2»*["-') , (3.121)inl4]. 

k=0 N ' X 

Toseehowweget (7)-(10)from these, proceed asfollows. In (11) put 2n + 1 for/?, and recall that [n+1/2] = n. 
Replace r by n -a. The result is (7). In (12) put 2n - / for /?, and note that [n - 1/2] = n - 1. Replace r by 
n - a - 1. The result is (8). In (11), put 2n for n and replace r by n-a. The result is (9). Finally, in (12), put 
2n for n and replace r by n-a. The result is (10). 

What we have done above is reveal the fourfold design of the Moriarty identities. These formulas occur frequently 
in trigonometric identities. 

We shall need the easy formula 

(13) £ (-'>*(a*)(X+rk)-(-'>"( r-n, 
k=0 

valid for all real x; this is formula (3.47) in [4] and can be proved from the Vandermonde convolution, for example. 
To carry out the proofs that the fourfold Moriarty (7)—(10) imply and are implied by (3)—(6), we need to note 

the following four sums: 

(H) 2 (* i ' ) ( ; : i ) - ("2:aK* ^smm, 
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(15) Z [2k
2"i) ("7-'**) -(Z?,)**" (3.158)m[4l. 

k=0 

(16) ± [lnk){na-Jk) = w£T(n+°\2*>, (3.26)in[4], 
k-0 

and 

(17) ± (r,l)(r-k
k)-

2iij{"^)^, (3.27) .n [4]. 
k=0 

By the way, formula (3.157) in [4] is redundant, being equivalent to (3J 58) by a simple change of variable. 
Relations (14)—(17) may be proved directly as we could even prove the original (3)-(6). They occur quite natur-

ally in work with trigonometric identities, and I first came on them some years ago while studying Bromwich [1] 
wherein they are implicit...some other time -we may discuss this case. Note how (14)—(17) differ from the corres-
ponding (7)—(10) in that 'k' has been replaced by '/? - k' in each case, or 'n-k-V fof thfe transition from 
(8) to (15). The relations (14)—(17) may be called another of IVIoriarty's disguises. The design of the four changes 
here. For proofs of (14)-(17), see [5]. 

PROOFS 
We turn now to the proofs. To begin with, we show that (3) may be found from (7) using (14) and (13). Here are 

the step-by-step details: 
n n k 

E <-'>"[!){"*')22k = £ (~1)k{*•)£ ( 2 V) [l-'i\ *««>. 

i=0 ' i d 

X ) f-tf1 ( %+ ') Y,(-Vk( "k') ( kV) > bV cha"ge o f variable, 
/=0 k=0 ^ ' ^ ' 

.fw;'(V')^(1.iJ . by (is). 

j**0 ' ' f 

The proofs that (8) and (15) imply (4), that (9) and (16) imply (5), and that (10) and (17) imply (6) are done in 
similar fashion, using (13), and we give the details so the reader will have no mystery left to solve. 

The steps may be reversed so that (7) follows from (3) using (14) and (13),etc., so that we find relations (3)-(6) 
equivalent to relations (7)—(10) assuming relations (14)-(17). 

To show that (4) may be found from (8) using (15) and (13): 

t (-»'(k
a) U+A)*2k+1 - £ (-»*(£) E (£t)(%"VJ - *«» 

k=0 ' j=0 k=0 k=0 j=0 

ho k=j 
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n i n-*j 

" E <-^[^l) E (-1)k ("V) ["'l'1)' by change of variable, 
1=0 k=0 

•t <-*[£,) "E <-»"["-:-')(':')' 
1=0 k=0 / * / 

i=o 

- ' - ^ ' E U ? , ) ( . - B V , ) 
l=o 

n 

' -^ 'E(£ i ) (» - / - . ) 
= r-7j"-? ( £ * • ) -?2a+', by (8). 

To show that (5) may be found from (9) using (16) and (13): 
n n 

(-<")i^r[n») ^ = E^U)E(t ) (n) - ^m-
k=0 ' 1=0 f 

E(i;)i>^)(n) 
k=l 

n—j 

( %)(~rf]Ef~1,k[kZJ)[nkJ)' by change of variable, 

k=0 ' k=0 1=0 
n n 

£*i \2j ) iL 
1=0 k=j 

Ed;)'-"7!; 
j=0 k=0 

n 

j=0 

n 

-'-irZ(J)(.-U)-'-»"S(J)(.i.) 
1=0 1=0 

, (-1)n_n_(n + a\ 22a b y ( g ) 
/ I •/• a \ Z s / 

To show that (6) may be found from (10) using (17) and (13) 

E (-»*{ .*)tM (**) ?2k - 5>«*( * ) E (%:})(i-i)- *™> 
z / c # k=0 1=0 

-E(s;/)E^(*)(r^ 
t[V^)(-1)n{nLa)'

 b V< 1 3 > -

*=0 ZA # k=0 1=0 

E (?;/)! 
/ - 0 Ar-/ 
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-^"E(?;/)(»-.) '(-""(V)**. "ydO). 
1=0 

PROOFS USING GENERATING FUNCTIONS 
From the binomial theorem we have 

oo oo 

n=0 
In particular 

op 

(18) £ ( £ ; * ) * " - ^ V r - x r * * 
n=a+1 

We first use (18) to prove (4) of Zeitlin, as follows: 

n 

#, k=a n=k 

= ±(-i>k[k
a)2

2k ± r - (^) 

-t)2\(J-t)2f \ (J-t)2f 

-a-r 

I'- 1)a22ata+1(1 + t)~2a'2. 
But also 

oo 

~22a H ( ^ V / ) ^ 1 1 = -22af+1(-na+1(i+tr2a~2, 
n=a+t 

so that each side of (4) gives the same generating function, whence, by uniqueness of the expansion, (4) is proved. 
The generating function for (3) is-similar, and is in fact 

t- Da22atat 1 - t)d+tr2-2. 
We have on the one hand 

n=0 k=0 ' k=0 n=k 

£M/(J)^*£ (»£*)<* 
k=a n=0 



-1974] T H E DESIGN OF THE FOUR BiiOHfAL IDENTITIES: MORIARTY INTERVENES 3 0 5 

k=a k=a 

On the other hand 
oo oo 

(-f)* 2 f(1^j} = (_na22af(1 _ t) J* j /, +2a +1 J (_t)n = 22a(f _ tf £ ("^a
+%1)(-t)n 

(1+ ti n=Q n=a 
oo o© 

= ̂ E (n^y)(-»n-22a E ("2^V)^"^7 
/?=a n-^ 

- ^ i ( ^ ' ) <-<>- +22a t ( r / » ) ^ 
/?=a n=a*7 

- ** E {(-iv/)*(r/,)} ^" - ̂  E <-*n(r//) If;7, 
n=a ' n=a 

so that (3) is proved. 
PROOFS USING HYPERGEOMETRIC FUNCTIONS 

The ordinary hypergeometric function is given by 
oo 

(19) F(a,b;c;x) - £ (-Vk ( ~a) ( ̂  ) ( ~c) " V . 

Since it is easy to verify that 

(20) ( " ; / ) ^ - ( " , ) ( - v ? ) ( " / ) _ / ' 
it is easy to see that series (3) may be put in hypergeometric form using a^ derivatives; in fact because 

Dlxk = al[k\ "k'a 

Da
xF(-n, n + 1; Kx)\xmf = a! £ (-1)k[ k ) ( » £ k ) 22k = a!S . 

k=>0 

Now a standard result about the hypergeometric function is that 

D^Flafb;c;x) = / n / ( a + ™ - ? ) ( b + %~ 1) ( c + ™~ ?) " F(a + m,b +m;c+m;x) , 

and thus 
a!S = al{-n+a

a~ ' ] ( n+
a

a\[ Vs+a
a~

 ? ) " 'F(-n+a,n + 1+a;%+a;1) 

= ,i( n\(n+a\l -KV1 i-% + a)!(-3/2 - a)! 
a-\a)\ a j\ a ) (-%+n)!(-3/2-n)! . 

by Gauss'formula for a terminating F(-m,h;c; 1), since a<n, 

= (_1la92a (n + a)!(-h+a)!(-3/2-a)!d! 
(n-a)!(-1/2 + n)l(-3/2-n)!(2a)! 

= i-i)a92a (n + aM-% + a)!(-% - a)fa! 2n+1 
(n- a)H-1/2 + nM-Y* - n)!(2a)! ' 2a+1 ' 

Making use of the formula (-'A + m)!(-'A - m)! = (-?)mir, this then reduces to 
/_*i/7 (n + a)!(2n + 1)a! P2a 

which proves (3). (n-a)!(2a+1)! ' 
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Somewhat similar proofs may be given for (4)-(6). Because 

«> ( iV , )^ -SF? i ( \ ' ) ( -V ' ) (•?)"-
some proofs of relations like (4) using hypergeometric series will involve integration techniques as well 

OTHER PROOFS BY DIFFERENTIATION 
For any function f we have trivially 

(22) ± ( »£*) M = ± ( - + *) *0 - £ ( * " ^ - k) . 
k=0 k=0 k=0 

Thus, for example, 
n 

<*> ./E (n^)UKa = '-'E(;V) (fl7*^-^E (V*K &=0 k=0 k=0 

;*M 
The series 

[n/2] 

can be written in a (complicated) closed form. See relation (1.70)—(1.71) in [4 ] . In principle then, one can obtain 
(23) in closed form. The form of the series again shows how our work is related to Fibonacci numbers since we 
know that 

[n/2] 
J 2 ( n k k ) = fn+1 = Fn + Fn-u F0 = 0, F, = 1. 

k=0 

A RECURRENCE RELATION 
Some other interesting things can be deduced by looking briefly at a recurrence relation for (4). Since 

I n+k\ .( n+k\ = (n+k + 1\ 
\ 2k J \2k + 1) \ 2k+1 J' 

we find easily 

t <-'>"( "s) ( n2k
k) ** * t <-»*[ ka ) ( £?,) ** = t '"«*( 'I "&! ') * 

k=0 k=0 k=0 
or, in virtue of (3), then 
(24) Sn+1-Sn = <-1)°(";a°)2*>%±l, 

where Sn is Zeitlin's series in (4). 
Recalling that n„1 

j=0 

we next find, since SQ = 0, that for arbitrary Sj, 

and unless we know how to sum this in closed form the method yields nothing. But since we do know the value of 
Sn, we may look on this as a way to have evaluated a new series, and so we have found in fact 

n 

(26) J2 (-1>k[k2a
a)(2ki-1) = (-Dn(n+a+1)[ n+a

a) -
k=0 

INVERSION 
As the reader will recall from the previous Moriarty episode [3 ] , a.good detective learns something by adroit use 

of inversion. Indeed, we now make use of the following inversion principle, that 

2k 



1974] THE DESIGN OF THE FOUR BilOHJlAL IDEiTiTiES: IVJORSARTY ilTERVEHES 307 

*M'1t,[%k)'M 
k=0 

if and only if 

k=0 

This is relation (21) on p. 67 of [6 ] . Applying this principle to (3), we find by inversion that 

(26) £ ^_Y \[k£>)(2k+1)2=(2n + 1)(2a + 1) ^ ^ " 2 s . 
k=0 ' * a ' 

This relation might be somewhat difficult to come by without the inversion application and may possibly serve in 
some way to indicate the fondness with which I like to use inversion techniques to establish new identities. 

Riordan gives another inversion formula, same page, which is 

k=0 
if and only if 

n 

9^= E (-1)rHk[n2-k)m-
k=0 

This may be used to obtain other interesting series. 
A F i i A L REMARK 

The four series (14)—(17) were posed as a problem in the American Math, Monthly [5] and the solution by M.T.L 
Bizley used just simple coefficient comparison in suitable generating functions. We asked there to sum 

m t(2
2
x
kVj)[x

n--\ 
for all real x and for / = 0, 1,. and / = 0,1. Our question as to whether the series can be summed for all integers 
i,j remains unanswered. 

It seems of value to remark also that in the case of (16) and (17) we have factorizations that are of interest: 

and *=° 

<29> t {2
2

X+
+l)(

Xn--k
k)= (§^n~i\(2X+1)2-(2k+1)2\ . 

k=0 k~° 
We leave it as an exercise for the reader to determine whether factorizations exist for (14) and (15). This has an 

easy affirmative answer. 
Sherlock Holmes [2, p. 470] remarked about the original Professor ioriarty that "the man pervades London, and 

no one has heard of him...l tell you Watson, in i l l seriousness, that if I could beat that man, if I could free society of 
him, I should feel that my own career had reached its summit, and I should be prepared to turn to some more placid 
line in-life." Our mathematical ioriarty formulas pervade mathematics and his formulas are the secret behind half of 
the conspiracy of formulas we meet with-in our work. Moriarty is everywhere Watson, everywhere! Look closely and 
you cannot help seeing him and his formula! 

EPIL06UE 
As if to show the force of the remark that Moriarty is everywhere, if we just look for him, it is instructive to say 

now that relations (14)—(1-7) are nothing in the world but relations (7)—(10) of ioriarty viewed in a slightly differ-
ent way. An easy way to see this is to make sufficient use of the following simple operations on series and binomial 
coefficients: 

for k> m, and, typically, v ' 
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i l lustration. We show that (14) is equivalent to (10): k==® k=0 

i (*•£,')( :zi) • t (*i»)( "-'-"•) • t ( v ) ( ;r.*) 
k=0 k=0 k=0 x 

Similarly (15) is equivalent to (8): 

jLi\2k+lj[ a-k ) 
k=0 

The reader should now have no diff iculty in showing that (16) is equivalent to (9), and that (17) is equivalent to (7). 
The equivalences are so complete and obvious that we wonder how anyone could miss them. Thus we have used the 
IVSoriarty formulas twice in our proofs of ( 3 ) - (6 ) . IVioriarty, IVJoriarty, all is Moriarty! " Indubitably my Dear Watson, 
indubitably." 
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[Continued f rom Page 292.] 

Theorem. The Fibonacci numbers form the only sequence of integers for which its extended sequence satisfies: 

(i) x„n = (-1)n+1xn, n an integer, 

(ii) any three consecutive terms of the sequence are relatively prime. 

Proof. Let xn be a sequence which satisfies (I) and (i i ) ; then, 

Xf = axo + bx-i = axo+hx-} . 
Hence, 
(*) ax0 = (f-b)xt . 

Now, 
XQ = ax„i +hx„2 = axj-bfaxj +bxg), 

which implies that 
(1+b2)x0 = ax-gtt -h) = a2x0 , 

using (*). Since the sequence is nontrivial XQ and x^ cannot both be 0. If XQ¥=0; then a = 1+b , which im-
plies that a = ±1 and b = 0. In either of these cases, (ii) wil l not hold. Hence, X Q = 0 . From (*) i t follows that b-t 

Thus far, the sequence hs the form x0 = 0,Xf,axf, - ; hence, in order to satisfy ( i i ) , Xf must equal 1 This 
yields a sequence of the form 

x0 = O, 1, a, a2+ 1, a3+2a, ••• * 

[Continued on Page 316.] 

JLI \ 2n-2k) \ n-a) ~ 2 ^ ( 2k + 1 )( n - a J 
k=0 k=0 

a n-1 

E l 2n \ I n-1 - k \ _ *T* ( 2n ) ( n-1-k \ 

[ 2k+1 / [n-1 -a ) " La [ 2k+1 j \ n-1 -a 
k=0 k=0 

= L * \ 2 n - 2 k - l ) \ n - 1 - a l = l ^ \ 2 k + l ) \ n - 1 - a ) 


