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With o(n) the sum of the positive divisors of n, one finds that 
(1) o(n) = o(n + 1) 

for 
(2) n = 14, 206, -, 18873, 19358, •», 174717, •». 
Sierpinski [1] asked if (1) has infinitely many solutions. Earlier, Erdos had conjectured [2] that it does, but the 
answer is unknown. Makowski [3] listed the nine solutions of (1) with n < 1(r and subsequently Hunsuckeref ai 
continued and found 113 solutions with n < 107. See [4] for a reference to this larger table. 

It is unlikely that there are only finitely many solutions but, in any case, there is a much larger solution, namely, 
(3) n = 5559060136088313. 

It is easily verified that the first, second, and fourth examples in (2) are given by 
(4) n = 2p, n + 1=3mq, 

where 
(4a) q = 3mH-4, p = (3mq - 1)/2 

are both prime, and m equals 1,2, or 4. One finds that 

(4b) o(n) = o(n + 1) = | (9mi1 + 3)-6»3m . 

The third and fifth examples in (2) are given by 
(5) n = 3mq, n+1=2p 

with the primes 
(5a) q = 3m+1 -10, p = (3mq + 1)/2 

for m = 4 and 5. Then 
(5b) o(n) = o(n + 1)=1~ (9mH +9) - 15« 3m . 

Our new solution (3) is given by (5 - 5a) for m = 16. But there are no other examples of (5) or (4) form <44. 
While we do conjecture that there are infinitely many solutions of (1) we do not think that infinitely many solutions 
can be constructed in this way. D.H. and Emma Lehmer assisted us in these calculations. 
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