ON FERNS' THEOREM ON THE EXPANSION OF FIBONACCI AND LUCAS NUMBERS

A. J. W. HILTON

The University of Reading, Reading, England

Let (F_{n}) be a Fibonacci-type integer sequence satisfying the recurrence relation $F_{n}=p F_{n-1}+q F_{n-2}$ ($n \geqslant 2$) in which $p^{2}+4 q \neq 0$, and let (L_{n}) be the corresponding Lucas-type sequence, as described in [2]. The object of this note is both to generalize Ferns' theorem [1] on the expansion of

$$
F_{x_{1}+x_{2}}+\cdots+x_{n} \quad \text { and } \quad L_{x_{1}+x_{2}}+\cdots+x_{n}
$$

and to simplify the proof. Ferns' theorem was proved for the case when (F_{n}) and (L_{n}) were the Fibonacci and Lucas sequences, respectively, so in the statement and proof of the theorem the reader may interpret (F_{n}) and $\left(L_{n}\right)$ as the ordinary Fibonacci and Lucas sequences, if he so desires.
Let

$$
S_{k}^{n}=\Sigma F_{x_{i_{1}}} F_{x_{i_{2}}} \cdots F_{x_{i_{k}}} L_{x_{j_{1}}} \cdots L_{x_{j_{n-k}}}
$$

where the sum ranges over all permutations ($\left.i_{1}, \cdots, i_{k}, i_{1}, \cdots, i_{n-k}\right)$ of $(1, \cdots, n)$ such that

$$
1 \leqslant i_{1}<i_{2} \cdots<i_{k} \leqslant n \quad \text { and } \quad 1 \leqslant i_{1}<i_{2}<\cdots<i_{n-k} \leqslant n
$$

for $0 \leqslant k \leqslant n$. Let a and β be the roots of $x^{2}-p x-q$ and let $A=F_{1}-F_{O} \beta, B=F_{1}-F_{O} a$. Then $A \neq 0$ and $B \neq 0$ (see [2]) so that
where

$$
a=\left(\frac{L_{1}+d F_{1}}{2 A}\right) \quad, \quad \beta=\left(\frac{L_{1}-d F_{1}}{2 B}\right)
$$

Then the generalized version of Ferns' theorem may be stated in the following way.
Theorem: If

$$
\Sigma_{e}=S_{0}^{n}+d^{2} S_{2}^{n}+d^{4} S_{4}^{n}+\cdots \quad \text { and } \quad \Sigma_{o}=d S_{1}^{n}+d^{3} S_{3}^{n}+d^{5} S_{5}^{n}+\cdots
$$

then

$$
F_{x_{1}+x_{2}+\cdots+x_{n}}=\frac{1}{2^{n} d}\left\{\left(\frac{1}{A^{n-1}}-\frac{1}{B^{n-1}}\right) \quad \Sigma_{e}+\left(\frac{1}{A^{n-1}}+\frac{1}{B^{n-1}}\right) \quad \Sigma_{0}\right\}
$$

and

$$
L_{x_{1}+x_{2}+\cdots+x_{n}}=\frac{1}{2^{n}}\left\{\left(-\frac{1}{A^{n-1}}+\frac{1}{B^{n-1}}\right) \Sigma_{e}+\left(\frac{1}{A^{n-1}}-\frac{1}{B^{n-1}}\right) \Sigma_{o}\right\}
$$

Proof: It is well known that if r is a positive integer

$$
F_{r}=\frac{A a^{r}-B \beta^{r}}{a-\beta}, \quad L_{r}=A a^{r}+B \beta^{r} .
$$

Therefore,

$$
a^{r}=\frac{L_{r}+d F_{r}}{2 A}, \quad \beta^{r}=\frac{L_{r}-d F_{r}}{2 B}
$$

Therefore

$$
\begin{aligned}
& \frac{1}{2 A}\left(L_{x_{1}}+x_{2^{2}}+\cdots+x_{n}+d F_{x_{1}+x_{2}+\cdots+x_{n}}\right) \\
& \quad=a^{x 1^{+x} 2^{+\cdots+x_{n}}} \\
& \quad=\frac{1}{2^{n} A^{n}}\left(L_{x_{1}}+d F_{x_{1}}\right)\left(L_{x_{2}}+d F_{x_{2}}\right) \cdots\left(L_{x_{n}}+d F_{x_{n}}\right) \\
& \quad=\frac{1}{2^{n} A^{n}}\left(S_{0}^{n}+d S_{1}^{n}+d^{2} S_{2}^{n}+\cdots+d^{n} S_{n}^{n}\right)
\end{aligned}
$$

Similarly

$$
\begin{aligned}
& \frac{1}{2 B}\left(L_{x_{1}+x_{2}}+\cdots+x_{n}-d F_{x_{1}+x_{2}}+\cdots+x_{n}\right) \\
& \quad=\frac{1}{2^{n} B^{n}}\left(S_{0}^{n}-d S_{1}^{n}+d^{2} S_{2}^{n}-\cdots+(-1)^{n} d^{n} S_{n}^{n}\right)
\end{aligned}
$$

The theorem now follows by addition and subtraction.

REFERENCES

1. H.H. Ferns, "Products of Fibonacci and Lucas Numbers," The Fibonacci Quarterly, Vol. 7, No. 1 (Feb. 1969), pp. 1-13.
2. A.J.W. Hilton, "On the Partition of Horadam's Generalized Sequences into Generalized Fibonacci and Lucas Sequences," The Fibonacci Quarterly, to appear.

*

THE FIBONACCI ASSOCIATION

RESEARCH CONFERENCE
PROGRAM OF SATURDAY, MAY 4, 1974
ST. MARY'S COLLEGE
9:00-9:30 PRELIMINARY GATHERING, coffee and rolls.
9:30-10:15 SEQUENCES GENERATED BY LEAST INTEGER FUNCTIONS Brother Alfred Brousseau, St. Mary's College
10:20-11:00 THE SEQUENCES $1,5,16,45,121,320, \ldots$ IN COMBINATORICS
Ken Rebman, California State University, Hayward
11:05-11:45 REPRESENTATION OF INTEGERS USING FIBONACCI AND LUCAS SQUARES
Hardy Reyerson, Masters Student, San Jose State University
12:00-1:30 LUNCH PERIOD
1:30-2:15 RECTANGULAR AND TRIANGULAR PARTITIONS
Leonard Carlitz, Duke University
2:20-3:00 GREAT ADVENTURES WITH CATALAN AND LAGRANGE
Verner E. Hoggatt, Jr., San Jose State University

