
TRIANGULAR NUMBERS 

V.E. HOGGATT, JR., and IVIARJORIE BICKWELL 
San Jose State University, San Jose, California 9111112 

1. INTRODUCTION 
To Fibonacci is attributed the arithmetic triangle of odd numbers, in which the nth row has n entries, the cen-

ter element is n* for even /?, and the row sum is n3. (See Stanley Bezuszka [11].) 

FIBONACCI'S TRIANGLE 
/ 

3 5 
7 9 11 

13 15 17 19 64 = 4$ 
21 23 25 27 29 125 = 5s 

SUMS 
1 = 
8 = 

27 = 

:13 

2s 

33 

We wish to derive some results here concerning the triangular numbers /, 3,6, 10, 15, ", Tn,'" »*". If one o b -
serves how they are defined geometrically, 

1 3 6 10 • -
one easily sees that 

(1.1) Tn - 1+2+3 + .- +n = n(n±M 

and 
(1.2) • Tn+1 = Tn+(n+1) . 

By noticing that two adjacent arrays form a square, such as 

3 + 6 = 9 '.'.?. 

we are led to 
(1.3) n2 = Tn + Tn„7 , 

which can be verified using (1.1). This also provides an identity for triangular numbers in terms of subscripts which 
are also triangular numbers, 

(1-4) Tn=TTn
 + TTn-1 • 

Since every odd number is the difference of two consecutive squares, it is informative to rewrite Fibonacci's tri-
angle of odd numbers: 
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FIBONACCI'S TRIANGLE SUMS 
f^-O2) Tf-T* 

(2* -I2) (32-22) Ti-Tf 
(42-32) (52-42) (62-52) Ti-Tl •2 

(72-62) (82-72) (9*-82) (Kp-92) Tl-Tl 

Upon comparing with the first array, it would appear that the difference of the squares of two consecutive tri-
angular numbers is a perfect cube. From (1.2), 

T2
+1 = (Tn+n + 1)2 = T2 + 2(n+1)Tn + (n + 1)2 

But, from (1.1), Tn = n(n + 1)/2, so that 

rf+1 - T2 = 2(n + 1)[n(n + 1)/2] + (n + 1)2 

= n(n + 1)2 + (n+1)2 = (n+1)3 . 
Thus, we do indeed have 
(1.5) T2

+1 -T2 = (n+1)3, 

which also follows by simple algebra directly from (1.1). 
Further, 

rf = cr„2 - Tnif) + (T„?, - rl2) +... +cri -T2
1) + ni-T$) 

n 
3 + (n- 1)3 + - + 23 + 13 

or, again returning to (1.1), 

(1.6) T2 = 11+2 + 3+- +n)2 = ] T k3 . 
k=1 

For a wholly geometric discussion, see Martin Gardner [10]. 
Suppose that we now make a triangle of consecutive whole numbers. 

WHOLE NUMBER TRIANGLE SUMS 
0 0 

1 2 3 
3 4 5 12 

6 7 8 9 30 
10 If 12 13 14 60 

If we observe carefully, the row sum of the nth row is nTn+i, or (n + 2)Tn, which we can easily derive by study-
ing the form of each row of the triangle. Notice that the triangular numbers appear sequentially along the left edge. 

ts 

Tn Tn + 1 Tn+2 Tn+3 «• Tn+n 

The nth row, then, has elements 

so that its sum is 

(n+1)Tn+(1+2+3 + ~ +n) = (n+1)Tn + Tn = (n+2)Tn 

Also, the nth row can be written as 
Tn Tn+1-n ••' Tn+1-3 Tn+1-2 Tn+1-1 

with row sum 



1974] TRlAiGULAR iUtVIBERS 223 

Tn+nTn+1-(1+2+3+..- +n) = Tn+nTn+1 - Tn = nTnH . 
Then, 
(1-7) nTn+1 =(n+2)Tn , 
which also follows from (1.1), since 

nTn+1="Jn±lf±2L =(n+2)Tn . 

The row sums are also three times the binomial coefficients /, 4, 10,20, - . , the entries in the third column of Pas-
cal's left-justified triangle, since 

„T . - n(n + 1)(n+2) . ? [ n(n + lMn+2f] _ ? I n + 2 
3 

The numbers 1, 4, 10, 20, —, are the triangular pyramidal numbers, the three-dimensional analog of the triangular 
numbers. Of course, the triangular numbers themselves are the binomial coefficients appearing in the second column 
of Pascal's triangle, so that, by mathematical induction or by applying known properties of binomial coefficients, we 
can sum the triangular numbers: 

«•» ^ - ( " J ' ) ' g r * - ( B S 2 ) " 
Finally, by summing over n rows of the whole number triangle and observing that the number on the right of the 

nth row is Tn+i - 1, 
n 

M 

since, by (1.1), summing all elements of the triangle through the nth row gives 

0+1+2 + 3+~+(Tn+1-1)=TTn+1_1 . 
Let us start again with 

1 
2 3 

4 5 6 
7 8 9 10 

This time we observe the triangular numbers are along the right edge. Each row sum, using our earlier process, is 

nTn - Tnm.1 = (n - 1)Tn-i +n2 = fn + 1)Tn - n . 

Clearly, the sum over n rows gives us 
(UO) TTn= TTrr1 + Tn 

or, referring again to the row sum of In -• 1)Tn^ +rt2 and to Equation (1.3), 

TTn ' E fO- 1,TH +121 = E [(i- 1)TH + *l+ TH] 

n—1 n n-1 n—1 

- £ '7l+Z *}+ £ Tj - £ 0 + 2>Tj+ Tn . 
M H M ' M 

Therefore, from (! JU), n-i 

M 
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If is also easy to establish that 
(1.12) T2n = 3Tn+Tn.-, , 
and 
(1.13) T2n~2Tn = n2, 

»-14) T2n-i-2Tn_1=n2 . 

2. GENERATING FUNCTIONS 
Consider the array A 

1 
2 3 
4 5 6 
7 8 9 10 

11 12 13 14 15 

We desire to find the generating functions for the columns. The first column entries are clearly one more than the 
triangular numbers Tn, (n = 0, 1,2,.—.). Thus, since the generating function for triangular numbers (as well as for 
the other columns of Pascal's triangle) is known, 

^0 (1-x)3 1~X <1~x)3 

We shall see that generally the column generators are 

(2 1) G (x) = Tk+t-(k+V2x + (Tk+1)x2
 = Tk+1 - (TkH + Tk)x + (Tk + 1)x2 

(1-x)3 (1-x)3 

PROOF: Clearly, G0(x) is given by the formula above when k = 0. Assume that 
G (x) = Tk+l-lk+V2x + tTk+1)x2 

(1-x)3 

Then, since each column is formed from the preceding by subtracting the first entry Tk+i, and adding one, the 
(k + 1)st column generator is 

/ T...«-(k+ 1)2Y + (T.. + 1)Y2 

Gk-f 
(1-x)' 

= Tk+1 ~<k+ 1)2j( + (Tk + 1ix2- (1"3x + 3x2 - x3}Jk+l + 1 

x(1-x)3 1~x 

= (-3Tk+l - fk + V2}+ (Tk+1-3Tk+1)x + Tk+1x
2-f-(1-2x +x2) 

(1-x)3 

SMow, from (k+1)2 = Tk+Tk+f and Tk = Tk„<j+kf this becomes 
Gk+1(x) = [3Tk+1+1-(Tk + TkH) + (Tk-1-3Tk+1)x+(TkHi-1)x2]/(1^ 

= H2Tk+1 -Tk+D- (3Tk+1 + 1 - Tk)x + (Tk+1 + 1)x2]/(1 -x)3 

= fTk+2)~ (Tk+2 + Tk+1Jx + (Tk+1 + V*2
 s Tfr+2 ~ (k + 2)2x + (TkH + 1)x2 

(1-x)3 (1-x)3 

This may now be exploited as any triangular array. 
We now proceed to another array B (Fibonacci's triangle). 

1 
3 5 
7 9 11 

13 15 17 19 
21 23 25 27 29 

Ljciicaaiu! to 
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We can tackle this immediately since we have already found the generators for array/!, because each entry in array 
B is twice the corresponding entry in array A, less one. Thus the column generators are 

(2.2) G*k(x) -2Wk+i-(k+1)2x + <Tk + 1)x2] __ 1-2X+X2 

(1-x)3 (1-x)3 

_(2Tk+1-1)-2[(k+1)2-1]x + (2Tk+1)x2 

(1-x)3 

Now since the row sums of Fibonacci's triangle are the cubes of successive integers, we can find a generating func-
tion for the cubes. 

f>*<?j?w = (* f; w * - £ > * - * £ <k+D2xk 

k=0 \ k=0 k=0 k=0 

OO OO OO \ j 

+ 2x £ *k + 2x2 X ) Tkx
k+x2 X xk\ t1-x)3 . 

But Ar=0 k=0 k=0 » 

(2.3) Z W * — I — and j^ Tkx
k = - ^ ~ 

kT0 (1-x)3 t * (1-x)3 

OO OO 

(2.4) Y*(k+ 1)2xk = -L±JL-3 = E (Tk+l + TK)xk 

k=0 (1-x) k=0 

(2.5) X xk = j J - . 
k=0 

Thus, applying (2.3), (2.4), and (2.5), 

(2 6) V * x
kG*M = 2-(1-x)2-2x(1+x)+2x(1-x)2 + 2x3+x2(1-x)2 

to k (1-x)3 (1-x)3 

(1 + 4x+x2)(1-x)2
 = 1+4x+x2

 = y * (k+i)3
x
k 

(1-x)6 (1-x)4 to 

Further extensions of arrays >4 and B will be found in a thesis by Robert Anaya [1 ] . 
Equation (2.6) also says that, for any three consecutive members of the third column of Pascal's triangle, the sum 

of the first and third, and four times the second, is a cube, or 
„3 UMVMV)-^ 

l("4)+1l(°-4
iyil("-4

2) + l[n-4
3)=n4 

by solving for the coefficients m the beginning values, using column 4 (J, 5,. 15,35, °"l in the order given: 

Observe that 

We can find 

/ . j r y = 14 

5*xf + 1°x2
=;24 

15>x1 + 5*x2+1*x3 = 34 

35' • xi + 15' • x2 + 5 • x3+ 1 • x4 = 44 

In the same manner, 
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(«) +«(»-') +88("-*) +*["-*) + ( V ) ' n* . 
Applying this method to the kth column, we obtain 

/ 
(2.7) n 

k 

£ 
M 

.nil k+1 
u [k+l-f [n+1r) • 

Returning to generating functions, (2.3) is a generating function for the triangular numbers. The triangular num-
bers generalize to the polygonal numbers P(n,k), 

(2.8) P(n,k) = [k(n -1)- 2(n - 2)]n/2 , 

the nth polygonal number of k sides. Note that P(n,3)=Tn, the 11th triangular number, and P(n,4) = n , the 
nth square number. A generating function for P(n,k) is 

(2.9) 1 + <*-3k = V p(„,k)x
n . 

The sums of the corresponding polygonal numbers are the pyramidal numbers [9] which are generated by 

(2.10) l + (k-3)x m y P*(nJ()xn 

where P*(n,k) is the nth pyramidal number of order k. Notice that k = 3 gives the generating function for the 
triangular numbers and for the triangular pyramidal numbers, which are the sums of the triangular numbers. 

1 SOME MORE ARITHMETIC PROGRESSIONS 
It is well known that the kth column sequence of Pascal's left-adjusted triangle is an arithmetic progression of 

order k with common difference of t In this section, we discuss subsequences of these whose subscripts are tri-
angular numbers. To properly set the stage, we need first to discuss polynomials whose coefficients are the Eulerian 
numbers. (See Riordan [2] J 

Let 
Ak(x) (3.1) 

(1-x)*« % 
= y nkxn 

Differentiate and multiply by x, to obtain 

But, by definition, 

x(1-x)A'kM +x(k + 1)Ak(x) = <A k+1 n 

n=0 

so that 
(3.2) 
Since, from Section 2, 

Ak+lM = Y » n
k+1xn 

<1-x)k+2 ' ~ 0 

Ak+1(x) = x(1-x)A'k(x)+x(k+1)Ak(x) . 

oo 

V n1x" =—*—, A1(x)=x 
% (I-*)2 

f ; „ v _ JO+XL AsM = x+x2 
n=0 (I-*)3 

V „V =* + 4x2+x3 , A3(x) = x + 4x2+x3 

n=0 (1-x)4 

From the recurrence it is easy to see that by a simple inductive argument, 
Ak(V = k! . 
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Also, we can easily write A4(x) =x4 + 11x3 + 11x2+x, which allows us to demonstrate Eq. (1.6) in a second way. 
Thus, using Tn = n(n + 1)/2, and the generating functions just listed, 

E it*- - E (n4 + 2n3 + n2) ;M 

n=0 n=0 

1_ 
4' 

x4+Ux3+1lx2+x _t2{1-xHx3 + 4x2+x) + (1-x)2(X*+x) 
a-x)5 

oo n 

- E E *v 
(1-xf 

_ x3 + 4x2 + x 
(1-x)b J (l-x)L 

n=0 k=0 

so that 

Tjj = (1+2 + 3 + - +n)2 = £ k3 

IMow we can write 

(3.3) 

k=0 

AkM = J2 S>-^-"y(*--/) 
J=0 

from (2.4) by applying the generating function to Pascal's triangle. Wotice that A]M, A^x), A3M, and A4M 
all have the form given in (3.3). 

Next, from a thesis by Judy Kramer [3], we have the following theorem. 
Theorem 57. If generating function 

AM = • > 
(f-x)rH 

where NM is a polynomial of maximum degree r, then AM generates an arithmetic progression of order r, and 
the constant of the progression is N(1). 

We desire now to look at 
0 0 00 00 

<) + n=0 n=0 f' n=0 (1-X> 

Now consider 
OO 

GM = 22 Q(Tn>k,xtl < 
n=0 

where Tn is the nth triangular number. Clearly, this is a polynomial in n of degree 2k. Let us assume it is expanded 
2k °° 

MnM = E V and —^777 = E ^ 
(1-x)j

 n=0 
j=0 

so that 
2k 

GM - J2 bjA/M Nk(x) 

PaU-X)>+1 (1-x)2k+1 

All of the AjM are multiplied by powers of (1 -x) in N^M except A2kM; thus, 

Nk(D = A2k(V = (2k)!/2kk! , 
which is, of course, an integer. Thus Q(Tn,k) is an arithmetic progression of order 2k and common difference 
d = (2k)!/2kkf. The general result is that, for 
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G*(x) = Yl Q [Q(n,m),k}xn 

n=0 

Q(Q(n,m),k) is an arithmetic progression of order mk and common difference d = (mk)!/rrrk! which thus must be an 
integer. 

4. FAL1NDROEVIBC TRSASyOULAB SyUfVSBERS 
There are 27 triangular numbers Tn, n < 151340, which are palindromes in base 10, as given by Trigg [ 8 ] . How-

ever, borrowing from Leonard [4] and Merrill [ 5 ] , every number in array C is a triangular number: 
1 
11 

(0 111 

1111 
11111 

Clearly, base 10 is ruled out, but array C indeed provides triangular numbers in base 9. Below we discuss some inter-
esting consequences including a proof. 

Let TUfj = (11111- 1)9 = Cn (n one's) so that 
Cn = 9n + 9n~1 +9n~2+-+9+1 = (9n+1 -1)/(9-1) . 

Now 
_Un(Un+1) 

'Un 2 ' 
where Un, written in base 3 notation, has /; one's, 

Un = (1111 ••• 1)3 = (3n+1 - 1)/(3 - 1). 
Then 

T - ? l 3nH-l\j 3n+t - 1 . A - (3n+1 - 1)(3n+1 + 1} _ 9n+1 - 1 . 
Un 2 \ 3-1 j \ 3-1 J 8 9-1 ~ Cn • 

Also, it is simple to show that if Tn is any triangular number, then so is 
(4.1) 9Tn+1 = T3n+1 

since 
9T +1 = 9"(n + V +1 = 9n2 + 9n+2 = (3n+1)(3n+2) = T 

This means that, if Tn is any triangular number written in base 9 notation, annexing any number of 1's on the right 
provides another triangular number, and the new subscript can be found by annexing the same number of 1's to the 
subscript of Tn, where n is written in base 3 notation. The numbers in array C, then, are a special case of Eq. (4.1). 

Three other interesting sets of palindromic triangular numbers occur in bases 3, 5, and 7. In each case below,the tr i -
angular number as well as its subscript are expressed in the base given. 

Base 3 Base 5 

Ti 
Tn 

T111 
T1111 

= 1 
= 101 
= 10101 
= 1010101 

T2 - J 
T22 = 303 
T222 = 30303 
T2222 = 3030303 

T3 =6 
T32 = 606 
T333 = $0606 
T3333 = 6060606 

Now, base 3 uses only even powers of 3, so the base 9 proof applies. For base 5, if Tn is any triangular number, then 

(4.2) 25Tn + 3=T5n+2 

since 
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25Tn + 3 25n(n + 1) . 9 = 25n2 + 25n + 6 _ (5n+2)(5n+3) + 3 = ~ T5n+2 2 2 2 

so that annexing 03 to any triangular number written in base 5 notation provides another triangular number whose 
subscript can be found by annexing 2 to the right of the original subscript in base 5 notation. Base 7 is demonstrated 
similarly from the identity 

(4.3) 49Tn + 6 = T7n+3 . 

Using similar reasoning, if any triangular number is written in base 8, annexing 1 to the right will provide a square 
number, since 
(4.4) 8Tn+1 = (2n + 1)2 . 

For example, T6 = (25)8 and (251)8 = 169 = 132. 

Any odd base (2k + 1) has an "annexing property" for triangular numbers, for (4.3) generalizes to 

(4.5) T(2k+1h+k = (2k+1)2Tn+Tk , 

but other identities of the pleasing form given may require special digit symbols, and Tk must be expressed in base 
(2k + 1). Some examples follow, where both numbers and subscripts are expressed in the base given. 

Base 8 

T4 = 11 

T44 = 1111 

T444 = 111111 

BilgJO 

t8 =22 

T88 =2222 

T888 = 222222 

Base 25 (t)25 * (fflw 

Tt = 33 

Tn = 3333 

Tm = 333333 

Base 33 (s)33 = (16)10 Base 41 (q)41 = (20) w 

Ts = 44 

Tss = 4444 

TSSs = 444444 

= 55 

= 5555 

Tqqq = 555555 

Base m(r)49 = (24) w 

Tr = 66 

Trr - 6666 

Trrr = 666666 

Base 57 (m)57 = (28) w Base 65 (n)65 = (32) 10 

77 
7777 
777777 

88 

8888 

888888 

Base 73 (p)y.? = (36) w 

'PP 

= 99 

= 9999 

Tppp = 999999 

Jay 19, (t)m = (W10 

T9 = tt 

T99 = tm 

T999 = tttttt 

5. GENERALIZED BINOMIAL COEFFICIENTS FOR TRIANGULAR NUMBERS 

Walter Hansell [6] formed generalized binomial coefficients from the triangular numbers, 

>m>m-1 '" 'm-n+1 [:]- TnTn-1 "• T1 
0 < n < m . 

That these are integers doesn't fall within the scope of Hoggatt [7 ] . However, it is not difficult to show. Since 
Tm = m(m + 1)/2, 
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where 

fml = I m\ I m+ 1 
ln\ \n) [n+1 •n + 1 

lm) are the ordinary binomial coefficients, so that ]~m Tare indeed integers if one defined 

as will be seen in the next paragraph or two., 
The generalized binomial coefficients for the triangular numbers are 

/ 
1 / 
/ 3 1 

1 6 6 

1 10 20 

1 15 50 

1 21 105 

1 
10 1 

50 15 

If the Catalan numbers Cn = 1, 1,2, 5t '14,42, 132, - , are given by 

2x 
n=0 

then we note that the row sums are the Catalan numbers, Cn+i. 
We compare elements in corresponding positions in Pascal's triangle of ordinary binomial coefficients and in the 

triangular binomial coefficient array: 

Let us examine 

[-] 

/ 
1 
1 
1 
1 

1 
2 1 
@ - 3 1 
4^6 4 1 

Im+1\ 1 m + 1\ 

1 1 
1 3 1 
1 ® 6 1 
1 10 20 10 1 

_ Im\lm+1\. 1 
\n J\n+1 ) m-n+ 1 
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