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1. Tchebichef polynomials of the second kind have been defined by 

It is known [ I ] that 

and 

Also [2] 

Un+f(xj = 2x Ujx) - Un-tfx) , 

U0 = I Uj = 2x . 

n t m Sin (n + 1)8 

[n/21 
•2r U"M= £ (V r ) (-iffor 

Fn+1 ='fn Un(i/2) , 
nth where Fn represents the n Fibonacci number. 

The first few polynomials are 
U0M = 1 

Uffx) = 2x 

U2M = 4x?-1 

U3M = 8x2-4x 

U4(x) = 16x4~12x2+L 

Figure 1 
If we take the sums along the rising diagonals in the expression on the right-hand side, we obtain an interesting 

polynomial pn(x), which is closely related to Fibonacci numbers. 
The first few polynomials are 

Pl(x) = 1, P2M = 2x, p3(x) = 4x2 , 
p4fx) = 8x3- I p5(x) = 16x4-4x . 

In this note we shall derive the generating function, recurrence relation and a few interesting properti.es of these 
polynomials. 

2. On putting 2x = y in the expansion on the right-hand side in Figure 1 we obtain 
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Figure 2 

The generating function for the lrr/? column in Figure 2 is (-1)k(1 - ty)~'k+1. Since we are summing along the 
rising diagonals, the row adjusted generating function for the kth column becomes 

Since 
hk(y)^(-1)k(1-ty)-(k+1)t3k+1 

1 °° -f 

k=0 
ty £}\t-ty 

we have 

(2.1) 

From (2.1) we obtain 

1-ty + r 
o<s> 

G(x,t) = Ya PnMt" = 

n=0 1-2xt + t* 

YjPnMf = t(1-2xt + t3) 3i~1 

n=1 

On expanding the right-hand side and comparing the coefficients of t , we obtain 
[n/3] 

(2.2) pn+1M = (2x)n-[n-J
2 ) (2xr3+ [n~2

4 ) (2x)"*+...= Yl \n~r2l (-WW*3' 
F=0 

Again from (2.1) we have 
oo 

a~~2xt+t3} 23 p„Mtn = t. 
n=1 

On equating coefficient of t on both sides, we obtain the recurrence relation 

(2.3) Pn+3M = 2xpn+2(x)-pn(x), n > 1, pjfx) = 1, P2M = 2x, P3M = 4X2. 

Extending (2.3) we find that p0M = 0. 
From (2.1) we have 

(2.4) G(x,t) = tFQxt - t3h Ffu) = (1 - u)"f -

Differentiating (2.4) partially with respect to x and t, we find that G(x,t) satisfies the partial differential equation 

2t 3S -(2x-3t2)-2£-2G = 0. 
dt $x 
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Since 

ff— E npnMf-\ |f - Xi &<*>* 
n=1 ox n=1 

it follows that 
(2.5) 2xp'n+2M - 3p'n(x) = 2fn + 1)pn+2M . 

3. On substituting x = 1 in the polynomials p „ M , we obtain the sequence { ^ I which has a recurrence relation 
(3.1) Pn+2 = Pn+1+Pn+h Po=0. Pf=i. 

The sequence I Pnl is related to the Fibonacci sequence | Fn I by the relation 

Pn~~Pn-1 = Fn ' 
which leads to 

(3.4) Pn'T, Fk • 
k=0 

From (3.4) several interesting properties of the sequence \Pn I can be derived. A few of them are 

(1) Pn = Fn+2-1 

(3.5) 

II 
(2) Yj\ = Fn+4-(n+3) 

k=1 

(3» X > f = Fn+2Fn+3~~2Fn+4 + fa+4) 
k=1 

n 

(4) with I I (1+xLi) = a0a1x+ - + a w x m
5 m = L / + L2 + - + L / ? . 

/=/ 

and ^n equal to the number of integers A: such that both 0< k < m and a^ = 0, Leonard [3] has proposed 
a problem to find a recurrence relation for qn. The author [4] has shown that the recurrence relation is 

Qn+2 = Qn+1 +^n +1^ Q'1 = °> ®2 = 1 -
Comparing this result with (3.1) we observe that 

Pn = ^n+1 • 

On using (3.5)—(1) and (2.2) we obtain 
[n/3] 

(3.6) Fn+2 = 1 + 22 in~r
2r) l-W**r. "> 0. 

r=0 l # 

a result which is believed to be undiscovered'so far. 
I am grateful to Dr. V. M. Bhise, G.S. Technological Institute, for his help and guidance in the preparation of this 

paper. 
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