$$
L\left(3^{n}\right)=\prod_{k=0}^{n-1} \frac{L\left(3^{k+1}\right)}{L\left(3^{k}\right)}=\prod_{k=0}^{n-1}\left[L\left(2 \cdot 3^{k}\right)+1\right] .
$$

Also solved by Paul S. Bruckman, Herta T. Freitag, Ralph Garfield, Graham Lord, C.B.A. Peck, M.N.S. Swamy, Gregory Wulczyn, and the Proposer.

REGULAR POLYGON RELATION

B-267 Proposed by Marjorie Bicknell, Wilcox High School, Santa Clara, California.
Let a regular pentagon of side p, a regular decagon of side d, and a regular hexagon of side h be inscribed in the same circle. Prove that these lengths could be used to form a right triangle; i.e., that $p^{2}=d^{2}+h^{2}$.

Solution by Gregory Wulczyn, Bucknell University, Lewisburg, Pennsy/vania.
Hobson, in Plane and Advanced Trigonometry, on page 31 states:

$$
\begin{gathered}
\sin 18^{\circ}=\frac{\sqrt{5}-1}{4}, \quad \sin 36^{\circ}=\frac{\sqrt{10-2 \sqrt{5}}}{4} \\
p=2 r \sin 36^{\circ}, \quad h=r, \quad d=2 r \sin 18^{\circ} \\
h^{2}+d^{2}=r^{2}+\frac{4 r^{2}}{16}(6-2 \sqrt{5})=\frac{(5-\sqrt{5})}{2} r^{2} \\
p^{2}=\frac{4 r^{2}}{16}(10-2 \sqrt{5})=\frac{5-\sqrt{5}}{2} r^{2} \\
\therefore p^{2}=h^{2}+d^{2} .
\end{gathered}
$$

Also solved by Paul S. Bruckman, Warren Cheves, Herta T. Freitag, Graham Lord, C.B.A. Peck, Paul Smith, M.N.S. Swamy, David Zeitlin, and the Proposer.

*

[Continued from Page 308.]
and in order for (ii) to be satisfied a must equal 1. Therefore, the given sequence must be the Fibonacci sequence. NOTE: The most general sequence satisfying (i) has the form

$$
\cdots, a x_{1}, x_{1}, x_{0}=0, x_{1}, a x_{1},\left(a^{2}+1\right) x_{1}, \cdots .
$$

Also, if condition (ii) is weakened to the restriction that two consecutive terms be relatively prime, then the most general sequence would have the form

$$
\cdots,-a, 1, x_{0}=0,1, a, a^{2}+1, \cdots
$$

REFERENCE

1. V.E. Hoggatt, Jr., Fibonacci and Lucas Numbers, Houghton-Mifflin Co., New York, 1969.
