$$
\begin{gather*}
5 \sum_{k=0}^{n}(-1)^{k} k H_{2 k+1}=(-1)^{n}\left(n H_{2 n+3}+(n+1) H_{2 n+1}\right)-p \tag{4.14}\\
4 \sum_{k=0}^{n}(-1)^{k} k H_{m+3 k}=2(-1)^{n}(n+1) H_{m+3 n+1}-(-1)^{n} H_{m+3 n+2}-H_{m-1} \quad(m=2,3, \ldots)
\end{gather*}
$$

and so on.

REFERENCES

1. L. Carlitz and H. H. Ferns, "Some Fibonacci and Lucas Identities"" The Fibonacci Quarterly, Vol. 8, No. 1 (Feb. 1970), pp. 61-73.
2. L. E. Dickson, History of the Theory of Numbers, Vol. 1, New York, 1952, pp. 393-407.
3. V. C. Harris, "Identities Involving Fibonacci Numbers," The Fibonacci Quarterly, Vol. 3, No. 3 (Oct. 1965), pp. 214-218.
4. M. R. Iyer, "Identities Involving Generalized Fibonacci Numbers," The Fibonacci Quarterly, Vol. 7, No. 1 (Feb. 1969), pp. 66-73.
5. V. E. Hoggatt, Jr., and M. Bicknell, "Fourth-Power Fibonacci Identities from Pascal's Triangle," The Fibonacei Quarterly, Vol. 2, No. 4 (Dec. 1964), pp. 26i-266.
6. A.F. Horadam, "A Generalized Fibonacci Sequence, Amer. Math. Monthly, Vol. 68, No. 5, 1961, pp. 455-459.
7. A. F. Horadam, "Basic Properties of a Certain Generalized Sequence of Numbers," The Fibonacci Quarterly, Vol. 3, No. 3 (Oct. 1965), pp. 161-176.
8. K. Subba Rao, "Some Properties of Fibonacci Numbers," Amer. Math. Monthly, Vol. 60, No. 10, 1953, pp.680684.
9. J.E. Walton and A. F. Horadam, "Some Aspects of Generalized Fibonacci Numbers," The Fibonacci Quarterly, Vol. 12, No. 3 (Oct. 1974), pp. 241-250.
10. D. Zeitlin, "On Identities for Fibonacci Numbers," Amer. Math. Monthly, Vol. 70, No. 11, 1963,pp.987-991.
11. D. Zeitlin, "Power Identities for Sequences Defined by $W_{n+2}=d W_{n+1}-c W_{n}$ " Tike Fibonacci Quarterly, Vol. 3, No. 4 (Dec. 1965), pp. 241-256.

* * *

[Continued from Page 271.]
where X is the largest root of

$$
\begin{equation*}
x^{4}-x^{3}-3 x^{2}+x+1=0 \tag{3}
\end{equation*}
$$

The astonishing appearance of (1) stems from a peculiarity of (3). The Galois group of this quartic is the octic group (the symmetries of a square), and its resolvent cubic is therefore reducible:
(4)

$$
z^{3}-8 z-7=(z+1)\left(z^{2}-z-7\right)=0
$$

The common discriminant of (3) and (4) equals $725=5^{2} \cdot 29$. While the quartic field $Q(X)$ contains $Q(\sqrt{5})$ as a subfield it does not contain $Q(\sqrt{29})$. Yet X can be computed from any root of (4). The rational root $z=-1$ gives $X=(A+1) / 4$ while $z=(1+\sqrt{29}) / 2$ gives $X=(B+1) / 4$.
It is clear that we can construct any number of such incredible identities from other quartics having an octic group. For example

$$
x^{4}-x^{3}-5 x^{2}-x+1=0
$$

has the discriminant $4205=29^{2} \cdot 5$, and so the two expressions involve $\sqrt{5}$ and $\sqrt{29}$ once again. But this time $Q(\sqrt{29})$ is in $Q(X)$ and $Q(\sqrt{5})$ is not.

