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1. iiTRODUCIiOi 
If we consider ffx) such that the power series expansion of ffx) is given by 

OO' 

then ffx) is called the ordinary generating function of the sequence I fn I. 
We define the generating function for the kth power of fn as 

(1.2) fkM - 2 : fy . 
n=0 

The complexity of expressions which involve f* increases as k increases. This makes it increasingly difficult to 
determine f^fx) by the methods described by Hoggatt and Lind [2], Riordan [5] devised a method to overcome 
this. His approach depended basically on the expansion of f„ by the binomial theorem and subsequent examina-
tion of the coefficients. Carlitz [1] applied this to the more general relation 

(1.3) un = pun-<i+qun-2 (n>2), UQ= 1, ur = p . 

He then developed an elegant approach which employed a special function of x and z and depended for success on 
the. identity un+fUn^,f -un = qh. Because it is so elegant and because it has -appeared hitherto In abbisvtated 
form in papers by Carlitz, Riordan, and Horadam [3], it is proposed here to apply it to the Fibonacci sequence and 
to expound it in sufficient detail for the general reader to be able to follow it. It is worth pointing out that Kolodner 
[4] used another approach in which he exploited the fact that the zeros of r 2 - 2zcos 0 + 1, with any 0 real or 
complex, are e^ and e''1®, the powers of which are easily managed. 

2. CARLITZ'METHOD 
Following Carlitz, we write 

00 

(2.1) F(x,z) = £ f7 - akx)(1 ~bkx)fkfx) z— , 
k=1 k 

where a = 1M1 + sjs) and b = 1Ml -\fs) satisfy the auxiliary equation x2 ~ x - 1 = 0. If we expand this, 
F(x,z) using the power series expansion of log (1 + z), we find that 
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f(^ = Y,<1-*k+bk)x+<*b)kx2)i
1- Y*?xi 

k=1 j=0 

= ~]LXJf/°0n'-f/d + J^x'**' log(1-afjz) 
1=0 J=0 

oo oo 

i=o )=o 

= -logfl - f0z) +xiog (1 + f_fz) 
oo 

+ x Y,xJ!og(l~(a + h)fjz + ahffz2) 
ro 

oo oo 

"x S*Jf/og (1" fJ+*zJ ~xYlx* lo9 (1 + fHz)' 
j=0 j=0 

Since f/+JfH - ff = (-DH , it follows that 

(1 - fJHzMf + fHz) = 1 - (fj+1 - fH)z - fj+1 fHz2 

= 1-fjZ-{f-(-1)J)z2 . 

These last two Sines are the crucial steps because they make it possible to eliminate terms in z from the numerator 
in the next few lines. It is the inability to do this with higher degree equations that seems to make the method break 
down then as will be pointed out later. 

F(x,z) = -log (1 -f0z)+xlog ff + Lfz) 

(2.2) 
+xJ^xJ!og(f-fjZ~ffz2) 

J=0 

-xJ^xflogd-fjZ-fff-f-VOz2). 
j=0 

The last two terms can be combined to give 

ho { L i-ff-f,z 
where there is no z in the numerator. This becomes 

oo oo 

' I X E ^ <-1)r'z i,2r 

2,2 ,r j=0 , = / (1-fjZ-ffz^S 

(2.3) oo oo 

The numbers a^r are, in a sense, the serth convoluted Fibonacci numbers;" they are generated by the rth power 
of the ordinary generating function for Fibonacci members. They will be considered in more detail in Section 4. (2.3) 
becomes 
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oo oo 

j=0 r=1 k=2r 

oo oo [k/2] 

- E ^ ' Z ^ X ^ ^ r J=0 k=1 

in which [k/2] is the greatest integer function: it represents the integral part of the real number k/2. 
If we replace this in (2.2) we get 

F(x,z) = -log (1 - f0z) +x/og (1 + Lfz) 

[k/2] 

u / w k=1 r=1 j=0 

[k/2] 

= -log (1 - f0z) + xlog (1 + f.1z)+x E * * E ~ ~ akA-2r((-Vrx) 
k=1 ,=1 

Comparing coefficients of zk we get 

L/1 — n. ~J.f_l\k„2\ 
xk / f \k [k/2] 

k k L^d r 
•(1-lkx + (-1)Kx~z)fk(x) = ^ - - x — ^ + x Y tz^-akrfk-2r((-1)rx) , 

k k ^-f r 
rf=1 

where % is the kth Lucas number. Thus, 
[k/2] 

(2.5) (l-zkx + (-7)kx2)fkM = l + kx ] T (-1)r(akr/r)fk_2rU-Drx) , 
r=1 

which agrees with the result obtained by Riordan's method [5 ] . For example, put k=2, and 

(1-3x+x2)f2M = 1+2x(-1)(1)f0(-x) = 1--^-

whichgives 

f2(x) = ^ — — -
1 -2x-2x2+x3 

1 THE COEFFICIENTS OF fk(x) 

It is still necessary to look more closely at the coefficients, especially for high k. Carlitz' approach here is also re-
warding to study. Applying his method to the Fibonacci coefficients we get from before 

~ / an+1 hn+1 \ k n w"-£('-^-)' 
(3.1) = 5k/2 E ( s ){ak~sbs + a2k-2sb2sx + a3k-3sb3sx2+ -j 

s=0 

k 

= 5k/2 E ( s ) *k'*b*(1-ak-sb*xr1 . 
s=0 

Define, 
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k 
Dk(x) = n (1-ak'sbsx) 

s=0 

and write fk(x) = Fk(x)/Dk(x)f where Fk(x) is a polynomial of degree < k (k > 1). We show that the coef-
ficients of these polynomials satisfy certain recurrence relations and can be determined explicitly. 

Then 

(3.3) 

Wow, 

n=0 

jLfkM--±rfkM. 

Ffc+iM = _a_ Fk(ax) __ j ^ _ _ ^ Fk(bx) 

D/c+jfx) V 5 Dk(ax) y/E Dk(bx) 

k+1 
I I U-ak+Usbsx) 

Dk+lM ... s=0 = fj _jjk+1xj 
Dk(ax) k 

E (1-ak+1~sbsx) 

s=0 
Similarly, 

Dk(bx) 

Whence from (3.3) we get 

(3.4) FkHfx) = ^ (1 - bk+1x)Fk(ax) - 4 = (1 - ak+1x)Fk bx) . 

Put 
k 

(3.5) Fk(x) = J^ Fksx
s 

s=0 

and it follows from (3.4) if we equate coefficients of xj that 

c - a'+1 ,- a'bk+1
 F b'+1

 F +a
k+1b> c 

(36)
 Fk+1J ~ w ki-~irFkJ-1-jfFki *-jrFk-'-1 

= fjFkj+<-1)kf-(k-j+2)Fk,j-1 

which is an expression that enables us to find Fk(x) explicitly. We still need to find Dk and to do this we need the 
following piece of algebra. 

It can be shown easily that 
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(3.7) 

where 

More generally we have that 
k k+1 

(3.8! 
. s=0 s=0 

where 

3 

O (1-r>x) = (-1)°z°x0 + (-1)1 (j-=4z°x1 

+ (- J)? (z4-1)(z3-1) z 1X2 + (_1}3 (z4-1j(z3-1)(z2-1) z3x3 

(z - 1)(z2 -1) (z-~ 1)(z2 - 1)(z3 - 1) 

+ (-1)4 (24 - 1Hz3 - 1Hz2 - 1Hz - 1) Z6X4 = y (_1)z'As<s-1)[4\s 

(z-1l(z2-1)(z3-1)(z4-1) J£ L S J ' 

r * i - i \4i=(z
4-i)<z3-i)-(z4-^-i) (s>0) 

L°J ' I" J (2-1)fz2-1)~(z*-1) 
k k+1 r 

n a-zsx) = J2(-i)sz,As(s~7)\ k+
s

1 

=0 s=0 •-

\k+n = 1 \k+?1 _ u k + i - D ( z k - D - ( z k - s + 2 - D (s>0) 
L ° J ' L s J (Z-IHZ2-I)...(Z*-I) 

f k + 1 l - Kb/a)k+1 - 1)((h/a)k - 1) '- ((b/a)k~s+2 - 1} 

L S J ((b/a) - 1)((b/a}2 - 1) - Ub/af - 1) 

_ a^
Us)(hk+1~ak+1Mbk-akh- (bk~s+2) 

a2 (b~aHb2-a2)-lhs-as) 

= g-ks+s(s-1l fkfk-1 "'fk~s+1 _ ~ks+s(s-1) ik\ 
f0fl'"f*-1

 U ^ ' 
Thus if we replace x by akx in (3.8) we get 

k+1 

(3j> %w-Ef-/ j^r^/ j I^K -
SF=0 

since ab = -1. This completes the examination of the nature of the coefficients of fk(xl 

4 CONVOLUTED FIBONACCI NUMBERS 
We shall now review briefly the so-called "convoluted" Fibonacci numbers [5]. akj satisfies the recurrence relation 

(4.1) ay - ak«. j j - ak^2j = *k-2J- U k>2j + 2 . 

Moreover; it is convenient to write 
akJ = 0, k < 2j . 

By definition, 

In 

replace z by b/a, and 

ajM - £ w** 
k=2j 

Consider 
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(1-x-x (ajfx) = a2u + (a2j+ij-a2jj)x + (a2ii-2j-a2j+ij-32u)x2-i--
= a2jJ +a2H,/x + a2hi,H>< + a2j,H*2 + -
= a2j,j + a2j- 1j* " a2j-2,j-1 + a2j-2,j- 1 + a2j- 1j- 7* + a2Jj-1*2 + ~ 

= aHM 

since ay = 0, k < 2j. Thus 

(4.2) (1-x-x2)J
aj(x) = (1-x-x2)HaH(x) = (1-x-x2f2ah2M - (1-x-x2)af(x) = 1 

Hence 
(4.3) ajM = (1-x-x2f* = {f(x)\ i , 

where f(x) is the ordinary generating function for Fibonacci numbers. 
8. PROBLEMS FOR FURTHER STUDY 

Consider the third-order recurrence relation. 
(5.1) 
and the sequences 

in which 

and for n > 2, 

*n = Kn-1 + Kn-2 + Kn-3 h > 3) 

0, 1, 7, 2, 4, 7, 13, 24, 44, - , Kn, 
1, 0, I 2, 3, 6, 11, 20, 37, Lh-: 

Kj ~ KQ, t-j - K2- Kf , 

Ln ~ Kn-1 + K, ^n-2 

Using a simple induction proof and matrix and determinant theory, we can show that 
K, Kn n+1 ^n-1 Kn 

Kn Kn-2 Kn-1 I ~ 
/ / 1\ 
1 0 0\ 
0 1 0\ 

1. (5.2) 
Kn-1 Kn~3 Kn-2\ 

Similar treatment with a fourth-order recurrence relation and the sequences 
0, 0, I 1, 2, 4, 8, 15, 29, 56, - . Mn 

0, 1, 0, 1, 2, 4, 7, 14, 27, 52, .«, Nn 

1, 0, 0, 1, 2, 3, 6, 12, 23, 43, ••, On 

yields 

(5.3) 

M„+3 Mn+2 Mn+1 Mn 
Mt 'n+2 Mn+1 Mn 
Mn+1 Mn Mn.j 

Mn-1 
Mn-2 

Mn Mn-1 Mn-2 Mn„3 

= (-1)" 

Ordinary generating functions for these are easily found, but what about generating functions for the powers of the 
numbers? The forms of (5.2) and (5.3) by comparison with 

Un+l"n-l-tfi = q2 

ah 
and fnHfn_7-f2 = (-1) n-1 

rule out Carlitz' method for finding the k power generating function for third- and fourth-order recurrence re-
lations. The complexity of the multinomial coefficients would seem to make Riordan's approach break down. 
Kolodner's dependence on quadratic equation theory makes it difficult to extend his method to general cubic and 
quartit equations. What approaches then can be used for recurrence relations of order greater than the second? 
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With o(n) the sum of the positive divisors of n, one finds that 
(1) o(n) = o(n + 1) 

for 
(2) n = 14, 206, -, 18873, 19358, •», 174717, •». 
Sierpinski [1] asked if (1) has infinitely many solutions. Earlier, Erdos had conjectured [2] that it does, but the 
answer is unknown. Makowski [3] listed the nine solutions of (1) with n < 1(r and subsequently Hunsuckeref ai 
continued and found 113 solutions with n < 107. See [4] for a reference to this larger table. 

It is unlikely that there are only finitely many solutions but, in any case, there is a much larger solution, namely, 
(3) n = 5559060136088313. 

It is easily verified that the first, second, and fourth examples in (2) are given by 
(4) n = 2p, n + 1=3mq, 

where 
(4a) q = 3mH-4, p = (3mq - 1)/2 

are both prime, and m equals 1,2, or 4. One finds that 

(4b) o(n) = o(n + 1) = | (9mi1 + 3)-6»3m . 

The third and fifth examples in (2) are given by 
(5) n = 3mq, n+1=2p 

with the primes 
(5a) q = 3m+1 -10, p = (3mq + 1)/2 

for m = 4 and 5. Then 
(5b) o(n) = o(n + 1)=1~ (9mH +9) - 15« 3m . 

Our new solution (3) is given by (5 - 5a) for m = 16. But there are no other examples of (5) or (4) form <44. 
While we do conjecture that there are infinitely many solutions of (1) we do not think that infinitely many solutions 
can be constructed in this way. D.H. and Emma Lehmer assisted us in these calculations. 
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