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1. INTRODUCTION

in this paper we are concerned with developing and establishing further identities for the generalized Fibonacci
sequence {H,(, with particular emphasis on summation properties. First we obtain a number of power identities
by substitution into some known identities and then we establish a number of summation identities. Next we pro-
ceed to derive some further summation identities invelving the fourth power of generalized Fibonacci numbers

H,¢ from aconsideration of the ordinary Pascal triangie. Finally, we arrive at some additional summation identi-
ties by applying standard difference equation theory to the sequence fh’,,} Notation and definitions of Waliton
and Horadam [9] are assumed.

2. POWER IDENTITIES FOR THE SEQUENCE { H, fr

In this section a number of new power identities for the generalized Fibonacci numbers ¢ 4, } have been ob-
tained by following the reasoning of Zeitlin [10], for similar identities relating to the ordinary Fibonacei sequence

Fapt-
Use will be made of identities {11) and {12} of Horadam [6], viz.,
(2.1) HoHpio—HZeq = (1) 74
(2.2) HyitrH ke — HonHoiriie = (1320 dF L Fy o
{where we have substituted n = m+4, # = s and k = r+s+ 1), and the identity
(2.3) HitiHp o+ M ieg = (20 —g)H, — dF,, .

where the right-hand side of (2.3} is derived from (9) of Horadam [6].
Re-writing (2.1} in the form

(2.4) B2~ HEey = (=)™ Td = HpH g

Vields 4 2 2 42 212 2 2 2
{2.5) Hig#HE = (HZ - HZ, )2 + 2H2HZ ;= 02+ 2(—1)"dH H ey + 3HE HE4;
(2.6) —2HZ 1 Hpy = HE 1 B2+ 2H gy HE = 2H o Hoag =107 = HoH ] — H2HZ 44

= —2~1)"dH  H sy — SHEHZ .1

Adding (2.5) and (2.6) gives
(2.7) Hi vy = 2H3 1y~ HE e HZ 4 2H g H3+ HE = 42

If we now substitute the identities

*Part of the substance of an M.Sc. thesis presented 1o the University of New England in 1968.
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Hpta = 3Hpeg +2H,
(2.8) Hpeg = 2Hppg+ Hp,

Hpt2 = Hpe1+ Hy
into the expression

Hprg = 4H sz — 19H 70— 4H g + HY

we have —§ times the left-hand side of (2.7), ie.,
(2.9) HA g —4HR 5~ 19HE 5 —aH? +HE = —6d2 .
Re-arranging (2.9) and substituting 7 = n + 7 vields

(2.10) His = HE g+ 19H 5+ aHP o — HE L, — 607
so that substitution for —642 from (2.9) gives

(2.11) His = 5HE g+ 15HE 13— 15H3 0 — 5HE . +HE
We note here that (2.9) is a verification of {4.6) of Zeitlin [11].
If we now let V,, = ., — H, we may re-write (2.9) in the form

(2.12) Vit — 3Viero — 22Vip1 — 26V — 25HE = —6d?
where .

Z Vk+j = H#+j+7 —Hj4 .

=0
Summing both sides of (2.12) over k, where k = 0, 7, --, n, gives

n
(2.13) 25 3 HE = Hjsg—3Hjsg ~ 22Hp s — 26H 50 + 6(n + 1)d% +8
k=0
where
§ = .9,04 —20p3q - b‘p2q2+4pq3 +28q4 .
(6 = 9 for the Fibonacci numbers {F,., } .J
Substituting for 4.4 in (2.13) by using (2.9) gives

n
(2.14) 25 3" HE = Hisg—3Hpz— 22H70 — HA+ 6nd? +§
k=0
which yields the obvious result
(2.15) HE o= 3H o= 22HR  — HE + 6nd? +8°= 0 mod 25 ,
where

6" = 9p* — 200%) — 6p%q° +4pg® + 397 .
(6" = 9 forthe Fibonacci numbers {F,, .
Multiplying (2.11) by (~1)"*5 and replacing n by k gives

(2.16) Wierq+ 6Wisz — Wisz — 28Wierq — 190 = 18(-1)KHE
where ‘g 4
(2.17) W, = (=) THE  ~(-1)"HE .
Summing over both sides of (2.16) for k = 0, 7, -, n, and using
n
{2.18) D Wierj = (1" T HE g = (=1VHE
=0

gives
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(2.19) 18 Z (—1)%HE = (=1)" [=H 5+ 6H g+ 9H g — 28HE 5 + 19H 411 + 6e
k=0
= (=) [HE g — 6H i3 — O o+ 24H7 ., — HET +6e by (2.11)
= (—1)" [-2H} 15+ 70H,4,‘+2 +28H7 1 — 2HE — 60%] +6¢ by (2.9),
where

e = 2059 - 3p°%9% - 209° +39* (= qgl(20% - 30%q - 204° +34%) ) .

e = 0 for the Fibonacci numbers { F, } .
Therefore, on using (2.11), we have

(2.20) 18 Z (~1)XHE = (~1)" [Hf g — 6H bz — GH o+ 24H ] — HAT + 6e
k=0
=2 '0 (-1)" [_Hn+3+5Hn+2+ 74Hn+1 - H,f—~3d2] +3e}
on using (2.9). Now (2.20) implies that

(2.21) Hig— 6H 3= HR o+ 24H7 ; —HE = 0 mod 6
from which we conclude that

(2.22) HEa—9HE o —HE = 0 mod 6

so that

(2.23) HEg—HE =0 mod 3

We will now use the identity

(2.24) Hicr1HirzHicratirs = Hirg —d?

(which is a generalization of an identity for the sequence { F,,} stated by Gelin and proved by Cesaro — see
Dickson [2]) to establish the two results

(2.25) 25 2 HiriHiroHiraHirs = 26H 5+ 22H% 0 + 3H ey — HE = 19nd? — 2502 + § — 5002
=0

(2.26) 9 Z (=1) X Hies 1 Hipo Hicra Hirs = (—1) ™ [=H 1o+ 5HA o5+ 14H 3 1q — H 15 — 302 ]
k=0 — 3¢ — 9d%(m) + 18y ,

where

2 ..
7

~

Q=

=30 m=2n~-1n
g(m)—{, = 2n, n

N

and

]

v = q%+29% +3¢%02 + 2qp3 (= qlg® +29% +3qp2 + 2¢%))
t = p tpgtyg

for the Fibonacci numbers {F !r v=0, t =1

Proof: Sun both sides of (2. 24) with respectto k. Then

(2.27) 25 Z Hir1HiroHpraHrss = 25 Z HE:3 — 25(n + 1)d?
k=0 k=0
m m
(2.28) 9 3" (=1 Hir1 HicrzHiraHirs = 9 3 (~1)% Hides — 9d%glm) ,
k=0 k=0
where

g(m) = Zj (-1)%
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Now,
n+3

n
Z HEs = Z /'/j4—2l‘2 .
k=0 j=0

t=p2tpg+q? ,

where

so that on using (2.14), with n replaced by n + 3, the right-hand side of (2.27) reduces to

Hie— 3H s — 22H g — Hi iz — 19002 — 742 + & — 5002

Eliminating H,f,«.g, H,‘,’+5 and H,f+4 by using (2.9) gives (2.25). Since

m m+3 .
E (—'”ka4+3 = - E (-7}1Hj4+2')/ ;
k=0 =0

where
v = g% +20% +39%%+ 2007 ,
use of (2.20), where m + 3 replaces n, and of (2.28) yields (2.26).
From (2.2) with m = n—j, h =/ and k = 7, we obtain
(2.29) HpHp—jig = Hp—jHpes = (~1)THdFEy = (=1)"dF; .
Now
Hy = Hpra—Hpry s

so that (2.29) simplifies to

(2.30) HptoH ps1—j— HpstHpeo—j = (=1)"TdF;.

From (2.3), with m = 2n+4—j and k = n+2, we obtain

(2.31) (20 — 9 2p+4—j— dF 2n+a—j = HpiaHpio—j* Hoe2Hpe1—j .
Substituting for H,+2Hp+7—; in (2.30) by means of (2.31) gives

(20 — QMM onea—j— dFonia—j = HpsgHpiz—jt Hoeghtpaog+ (=1)"7 dF;

(2.32) (0Lt * L2z + (~ 1) d Fj

which may be written as
(~1H*7 g { (20 = W 2psaj — dF 2e0— }

(2.33 = (=1 (pLpysa+ Gl peolHpso—iHier + (=1)" T dHpagF; .

From (2.2) with m = j+1, h = n+ 17— and k = n+2 -/, we gbtain

(2.34) HutoHnes— HierHansa—y = (=17 dF pag_iFria—g
so that

(2.38) (=177 Hysg(20 — gH2pea—j = (=17 (20 — Q)H 2t nes — d(20 — 4)F a1 —jFvo—j -

Substituting (2,35) into (2.33) gives

(20 = QJdF i g—jFpoo—j + (~11 T 0L ne3 # GLe2) *HpwojHjey (1) T dHje1 Fonta—i
#(=1)T T g Fy = (~ 17120 — g)H psoHipes -

(2.36)

The following identities may be proved by induction:
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n
(2.37) 2 3 A-1D¥H izt = (=1 Hppezpi1 +Hppez  (m = 2,3, )

=0

n
(2.38) 3 > (-1 Hpegpe = (=1 Hppgneo + Hm—o ~ (m = 2,3, )

=0

n

(2.39) 11 D (=¥ H ik = (=1)" [5Hpyi5p41 + 2Hmtsn] +4H o — 5Hp_

=0

fm=12-)
n
(2.40) 4 3 HiHoker = HanesHnt HanHanes — 207
=0
n
(2.41) 3 (~1*HZ ok = (~1)"HpsonHimtont2* Hmtlm—2 (m = 2,3, )
k=0
n
(2.42) 73 (-5 HE e = (~1)" HpsanHmtansa* HmHm—g  (m = 4,5, )
=0
n
(2.43) 2 HysoHRer = HpsgHpsaHoer - palp +q)
k=0
n

(2.44) 2 3" (~1) HiHfrs = (~1)"Hps2Hps1Hy +palp — q) .

k=0
Zeitlin [11] has also examined numerous power identities for the sequence % H, } as special cases of even power
identities found for the generalized sequence { w, { used in Horadam [7], and earlier by Tagiuri (Dickson [2]).
As seen in Horadam [7], the generalized Fibonacci sequence § H, } is a particular case of generalized sequence
% ) } for a=qg, b=p, r=17 and s=—1. Hence applying these results to (3.1), Theorem I, of Zeitlin [11]
yields, for n = 0, 7, - (see (2.47) below):

2t
(2.45) (~1)m 3 (gl (_;;)H;f(,,+2,_k,+,,o (i= JT7)
k=0

= (_”rnofmt(4r-t-1)/2 ( er) (—5)t7 g" ké1 Fr%;k )
However,
(_7)mt(4r-t-1)/2 - (_I)thr-mt(t+1}/2
= (=1 2mitr-mt(t+1)}+mt(t+1)/2
= {_7)mt(t+7)/2

since 2mitr and mt(t + 7)* are always even. Hence, we may rewrite (2.45) as

*This result for mt(t + 1) may be easily verified by considering the table
m ¢ t+1 mtft+ 1)

odd odd even—~—~___
even even odd — Ve
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2t
(2.46) (=117 3 bR (= L) ez,
k=0

¢
= (—7)rmotmi(t+1)/2 ( ;ir)(_ﬂt-rdr k@, F2, .

where ng =0, 1, -, mt =12 -,r=201--,t and where the
e ) P

are defined (as a special case of (2.9) of Zeitlin [11]) by

2t t
(2.47) E b/((2t} ( _L) y2* = T g2 =K Lyt 1)
k=0 2 k=1

If we now consider r = ¢ = 7 in {2.46) and then (2.47), then (2.48) reduces to
(2.48) (1) [HZ (n+2)4ny — LomHBtnt1)tn, * Hinn, | = A~1)""0 dF F -

on calculation. This corresponds to (4.5) of Zeitlin [11].

Similarly, we can obtain (4.6) to (4.18} of Zeitlin {11] by the correct substitutions into (2.46) and (2.47), where
as already mentioned, (4.6) is our previous identity, (2.9). Identities (4.7) to (4.16) of Zeitlin should be noted for
reference and comparison.

3. FOURTH POWER GENERALIZED FIBONACCH IDENTITIES
Hogoatt and Bicknell [5] have derived numerous identities involving the fourth power of Fibonacei numbers

F,,} from Pascal’s triangle.
By considering the same matrices § and U/ whereuvy; =Hg=q andus=H;=p, ie,

g 06 ¢ 0 1
g 0 0 1 4
{3.1) S=1lg 0 1 3 6
g 1 2 3 4
T 17 7 171
and U = (ay) is the column matrix defined by
(3.2) a,-1=( e )H%iHi;7 =125

the following identities for the fourth power of generalized Fibonacei numbers may easily be verified by proceeding
as in Hoggatt and Bicknell [5]:

4n+1
(3.3) > (1) '( an ) HE; = 25" (HEsi— Hinuier) = Aj  lsay)
=0
4n+2 .
(3.4) 2. (—7/'( w2 ) Hisp = 25" (Hgpry = 2Hotin1 + Hojrz) = Aj=Ajse
=0
4n+3 . )
38 - (-1 (4’” R ) Hiti = 257 (Hipai — SHomass1 + 3Hopaien — Honting ) = Aj= 2507 + Ajsa
=0

4n+4
{3.6) Z (- 71'( 4n ,.+ 4 ) H,'ﬁj = 25" H24h+j - 4H£fy+j+1 * 5/'/24,1+j+2 - 4/”'22}1+j+3 + Hﬁf,+,-+4)
=0 = Aj—3Aj+1+3Aj+2—A/‘+3 .
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Noting that the coefficients of the terms involving the A’s on the right-hand side of the above equations are the
first four rows of Pascal’s triangle, we deduce the general identity
4n+k .
(3.7) > -1y ( 4n rk ) Hij = 25" (HS i — (k= DHEijeq + = # (=15 W iini)
=0
= Aj= (k= 1)Ajeg # = +(~1)% T Ajric -
Similarly, we have

4n+5
(3.8) > -1 ( AN ) Hfei = 257 (HE4js0 — Hipsjes) = 25Aje2,
s
which results in the recurrence relation
(3.9) Aj—4Ajr1 +6Aj2—4Aj43+ Ajrg = 25A142
ie.,
(3.10) Aj—4Ajrq — 79Aj+2“4Aj+3+Aj+4 =0
on equating (3.8) and (3.7) with k = 5. Defining
(3.11) Glj) = Hpysj— 4Huirs — 19H sjo — 4H 23+ Hitsjva
yields
(3.12) 25" {Glj) ~ Glj+ 1)} = Aj—4Ajr1 — 19Ajs2— 4Ajs3+ Ajrg

=0 onusing (3.10) .
Hence, G(j) is a constant.
When n =j = 0, (3.11) reduces to

(3.13) G(0) = —642

which leads to identity (2.9) which is in turn a generalization of a result due to Zeitlin [10] while also being a ver-
ification of a result due to Hoggatt and Bicknell [5] and also Zeitlin [11].

4. FURTHER GENERALIZED FIBONACCI IDENTITIES

In addition to the numerous identities of, say, Carlitz and Ferns [1], lyer [4], Zietlin [10], [11], Subba Rao [8]
and Hoggatt and Bicknell [5], Harris [3] has also listed many identities for the Fibonacci sequence { Fp % which
may be generalized to yield new identities for the generalized Fibonacci sequence { H, }

n
@.1) D kHi = nHpiz— Hpszt Hz
k=0
Proof: i
upAv = Augve) = vier1 Aug
(A is the difference operator) then

n n
Z ugAvg = [ukvk]Z+7 - Z Ve+1Aug
k=0 =0
Let uy = k and Avg = Hy. Then

k-1

Aug =1 and Vk:Z Hi=Hgr1—p.
=0

Omitting the constant —p from vg, we find
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n

n
D ktg = [kHir1187T = 3 1-Hpwo = (04 DHpso = Hpsg —p — Hy— Ho = nHpso — Hpyz#+ (20 +4).
k=0 k=0

Using this technigue, we also have the following identities:

n
(4.2) > 1Kkt = (=1)"n# DH g # (=1 Hp 2~ Hog
=0
n
(4.3) 3 kHok = (n+ 1)Hapss — Hansa* Ho
=0
n
(4.4) E k/'/2k+7 =(n+ 7}H2n+2 . H2n+3 +Hq
=0
n
(4.5) D kPHog = (n2+2)Hapeq— (2n+1)H, — (20— )
k=0
n
(4.6) Z k2H2k+7 = (ﬂ2+2)H2n+2 —(2n+1)Hoprq1—(p+2q)
k=0
n k
4.7 DD, Hi=Hnpg—(n+3p—q
k=0 j=0
n
(4.8) > KPHy = (02 +2)H 40— (20 — 3)H,r3— Hg
k=0
n
(4.9) > k3Hy = (034 60— 12)H 42— (307 = 9n + 19)Hpr3+ (500 +31q)
k=0
n
(4.10) > k*Hy = (n* + 120% — 480 + 98)H 1.2
k=0

#(4n° — 180 + 76n — 159)H 43 — (416p + 257q)

n
(4.11) 59 (~1)¥Hy = (~1)"(Hon+2+ Han) = (b — 34)
=0
n
(4.12) 5 z: (—7/k/'/2k+7 = (—1)"(Hops3+ Hops1) +(2p — g)
k=0
n
(4.13) 53 (-1 kHy = (~1)"(nH 242+ (n+ 1)H2,) —q

=0
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n
(4.14) 53 (=1 kHr1 = (~1)"(nH 2n 43+ (0 + DHapeq) = p
=0

n
@15 43 (=1 kHmezic = A-1)"n 4 DH, o= (=1)"H, o= Hmg  (m = 2,3,-)
k=0
and so on.
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[Continued from Page 271.]

where X is the largest root of
(3) x*=x3-32+x+1 = 0.
The astonishing appearance of (1) stems from a peculiarity of (3). The Galois group of this quartic is the octic
group (the symmetries of a square), and its resolvent cubic is therefore reducible:
(4) B-8-7=(z+1)P-2-7) = 0.

The common discriminant of (3) and (4) equals 725 = 52. 29. While the quartic field @(X) contains af\/5) as a
subfield it does not contain Qf+/29). Yet X can be computed from any root of (4). The rational root z = —1
gives X=(A+1)/4 while z=(7+/29)/2 gives X=(B + 1)/4.

It is clear that we can construct any number of such incredibie identities from other quartics having an octic group.
For example

B-xP—5P—x+1=0
has the discriminant 4205 = 292 . &, and so the two expressions involve \/5 and /29 once again. But this time
0(\/29) isin O(X) and Q(/5) is not .
Sodotooioiok



