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1. liTRODUCTIOi 
In this paper we are concerned with developing and establishing further identities for the generalized Fibonacci 

sequence | Hn J, with particular emphasis on summation properties. First we obtain a number of power identities 
by substitution into some known identities and then we establish a number of summation identities. Next we pro-
ceed to derive some further summation identities involving the fourth power of generalized Fibonacci numbers 
I Hn f from a consideration of the ordinary Pascal triangle. Finally, we arrive at some additional summation identi-
ties by applying standard difference equation theory to the sequence \Hn\* Notation and definitions of Walton 
and Horadam [9] are assumed. 

2. POWER IDENTITIES FOR THE SEQUENCE \Hn.\ 

In.this section a number of new power identities for the generalized Fibonacci numbers I Hn J have been ob-
tained by following the reasoning of Zeitlin [10], for similar identities relating to the ordinary Fibonacci sequence 

Use will be made of identities (11) and (12) of Horadam [6], viz., 

(2.1) HnHn+2-H*+1 = l-1)n+1d 

(2.2) Hm+hHm+k-HmHm+h+k = (~t)m dFhFk * 

(where we have substituted n = m+he h = s and k = r + s+1), and the identity 

a3) Hk+1Hm_k + HkHm^k^ = (2p~~q)Hm-dFm . 

where the right-hand side of (2.3) is derived from (9) of Horadam [6]. 
Re-writing (2.1) in the form 

(2.4) H2
n-H

2
n+1 = (-l)n+1d-HnHn+1 

yields 
(2.5) Hiv+H* = (H2~H2

n+1)
2 + 2H2H2

n+1 = d2' + 2(-l)ndHnHn+, +3H2 H2
H 

(2.6) ~2H3
n+1Hn - H2

+-,H
2 + 2Hn+1H

3
n = 2HnHn+1[(-1)n+1 d - HnHn+1J - H2H2

+1 

= —2(—1) dHnHn+i — 3H^Hn+f . 

Adding (2.5) and (2.6) gives 
(2-7) Hi+1-2H^1Hn-H*+1H*+2Hn+1H%+H*=d2 . 

If we now substitute the identities 

*Part of the substance of an M„Sc. thesis presented to the University of New England in 1968. 
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Hn+4 - 3Hn+i + 2Hn 

(2.8) | Hn+3 = 2Hn+1 + Hn 

^n+2 = Hn+1 + ^ti 
into the expression 

Hi+4 - 4H*+3 - WHt+2 - 4H*+1 + H4 

we have -6 times the left-hand side of (2.7), i.e., 

(2 J) H4
+4 - 4H*+3 ~ 1M*+2 - 4H*+1 + H4 = -Bd2 . 

Re-arranging (2.9) and substituting n = n + 1 yields 

(2.10) H*+s = 4H4
+4+19H4

+3 + 4H4
+2-H

4
+1 - Bd2 

so that substitution for -Bd2 from (2.9) gives 

(2.11) H*+s = SHi+4 + 15H*+3 - 15H*+2 - 5H*+1 + H4 . 

We note here that (2.9) is a verification of ;(4.6) of Zeitlin [11]. 
If we now let Vn = H4+j - H4, we may re-write (2J) in the form 

(2.12) Vk+3 - 3Vk+2 - 22Vk+1 - 26Vk - 25Hf = -Bd2 , 

where 
n 

Summing both sides of (2.12) over k, where k = 0,1, ••> n, gives 
n 

( 2 J 3 ) 25 £ //j£ = H4
n+4 - 3H*+3 - 22H*+2 ~ 26H4

+1 + Bin + 1)d2 + 8 3 

k=0 
where 

5 = 9p4-2Qp3q-6p2q2 + 4pq3 + 28q4 . 
(8 = 9 for the Fibonacci numbers | Fn J J 

Substituting for H4+4 in (2.13) by using (2.9) gives 
n 

(2.14) 25 ] P Hf= H*+3 - 3H*+2 - 22H4
n+1 - H4+Bnd2 + 8 

k=0 

which yields the obvious result 
(2.15) H*+3 - 3H*+2 - 22H4

H - H4+ Bnd2 + 8"= 0 mod 25 , 
where 

8' = 9p4 - 2Qp3q - Bp2q2 + 4pq3 + 3q4 . 
(8" = 9 forthe Fibonacci numbers | Fn I J 

Multiplying (2.11) by (-1)n+5 and replacing n by k gives 

(2.16) Wk+4 + BWk+3 - 9Wk+2 - 24Wk+1 - WWk = 181- 1)kHf , 
where 
(2.17) Wn = (-1)n+1Hf+1-(-1)nHf. 

Summing over both sides of (2.16) for k = 0,1, —f n, and using 
n 

(2.18) ] P Wk+j = l-1)n+i+1H4
+j+1 - (-1)1 Hf 

k=0 

gives 
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n 

(1M W YJ (-DkHi = (~nn[-Hfi+5 + 6Hfl+4i-9Hi+3-24Hi+2+mHfl+1] +6e 
k=0 

= (-1)n[H*+4 - 6H4
+3 - 9H4

+2 + 24H4
+1 - H4] + 6e by (2.11) 

= (~-1)n [-2H4
+3 + WH4

+2+28H4
+1 -2H4~ 6d2] + 6e by (2.9), 

where 

e = 2p3q-3p2q2-2pq3 + 3q4( = q(2p3 - 3p2q - 2pq2+ 3q3)) . 

(e = 0 for the Fibonacci numbers | Fn J J 
Therefore, on using (2.11), we have 

n 
(2.20) 18 Y, (~1)k^k- (-Dn [H4

+4-6H4
+3-9H4

+2 + 24H4
+1-H

4] +6e 

= 2 | (-1)n [-H4
n+3 + 5H4

n+2
+ MH*+1 -H4-3d2] +3e\ 

on using (2.9). Wow (2.20) implies that 
(2.21) H4

+4 - 6H4
+3 - 9H4

+2 + 24H4
+1 - H4 = 0 mod 6 

from which we conclude that 
(2.22) H*+4 - 9H*+2 -H4 = 0 mod 6 
so that 
(2.23) H*+4 -H4^ 0 mod 3 . 

We will now use the identity 

(2.24) Hk+iHk+2
Hk+4Hk+5 = Hk+3~d 

(which is a generalization of an identity for the sequence | Fn | stated by Gelin and proved by Cesaro - see 
Dickson [2]) to establish the two results 

n 

(2.25) 25 Y, Hk+1Hk+2Hk+4Hk+5 = 26H4
+3 + 22H4

+2 + 3H4
+1 - H4- 19nd2 - 25d2 + 8 - 50t2 

k=0 

m 

*2-26* 9JL (~^kHk+lHk+2Hk+4Hk+5 = (-l)m [-H^6 + 5H4+5 + M**4- M4
+3~ 3d27 

k=0 -~3e-9d2g(m) + 18y 
where 

nf™i - < 0 if m = 2n - 1, n = 1, 2, -
9(m) - \ 1 if m = 2n, ' n = 0,1,-

and 
{ y = q4 + 2q3p+3q2p2+2qp3( = q(q3 + 2q2p + 3qp2 + 2q3)) 
\ t = p2 + pq+q2 . 

for the Fibonacci numbers \Fn\ , y=0, t = 1. 
Proof: Sun both sides of (2.24) with respect-to k. Then 

n n 
(121) 25 1C Hk+1Hk+2Hk+4Hk+5 = 25 22 Hi+3-25(n + 1)d2 

k=0 k=0 
m m 

(2.28) 9 22 (-VkHk+lHk+2Hk+4Hk+5 = 9 ^ (-*>*'Hk+3 - 9d2g(m) , 
k=0 k=0 

where m 

g(m) = 22 (~f)k ' 
k=0 



1974] SOME FURTHER IDENTITIES FOR THE GENERALIZED FIBONACCI SEQUENCE | Hn\ 275 

Now, 

where 

n n+3 

k=o 1=0 

t = p2 + pq-fq2 , 

so that on using (2.14), with n replaced by n + 3, the right-hand side of (2.27) reduces to 

Hn+6 - 3H^+5 - 22H^+4 - H&.3 - 19nd2 -7d2 + 8~ 50t2 

Eliminating H^+Q, Hf,+s and Hn+4 by using (2.9) gives (2.25). Since 

m m+3 

k=0 j=0 

where 
y = q4+2q3p + 3q2p2+2pq3

 f 

use of (2.20), where m + 3 replaces n, and of (2.28) yields (2.26). 
From (2.2) with m = n -j, h = j and k = 1, we obtain 

(2.29) HnHnH+1 - HnHHn+1 = (-D^dFjF, - (-U^'dFj . 

Now 
Hn = Hn+2" Hn+1 i 

so that (2.29) simplifies to 

(2.30) Hn+2Hn+1H - Hn+1Hn+2H = (-~1)n+idFj. 

From (2.3), with m = 2n + 4-j and k = n+2, we obtain 

(2.31) (2p - q)H2n+4~j- dF2n+4-j = ^n+3^n+2-j + Hn+2Hn+l-j . 
Substituting for Hn+2Hn+i-j in (2.30) by means of (2.31) gives 

(2p-q)H2n+4~i-dF2n+4-] = ^n+3Hn+2~! + Hn+1-hn+2->l + (-V^'dFj 

(2-32» = (pLn+3^qL^2)Hll+2_1H-nn+idF1 

which may be written as 

(-1)i+1HiH | (2p-g)H2n+4H-dF2n+4-j\ 

( 2 " 3 3 ) = (-1)i+1(pLn+3 + qLn+2)Hn+2HHl+1 + (-1)"HdHjHFj . 

From (2.2) with m = j+ 1, h = n + 1 - / and k = n +2~j, we obtain 

(2.34) Hn+2Hn+3-Hj+1H2n+4H = <-1)l+1dFn+1HFn+2H 

so that 
(2.35) (-1)>+1Hj+1(2P-q)H2n+4-.j = (-1)i+1 (2p -q)Hn+2Hn+3-d(2p-q}Fn+1^Fn+2-j . 

Substituting (2,35) into (2.33) gives 
(2p - q)dFn+i_jFn+2-.j+(-1)i+1 (pLn+3+qLn+2) 'Hn+2_jHj+1 + {-1)1+1 dHj+1F2n+4H 

( 2 - 3 6 ) + (-1)n+1Hj+1Fj = (-1)i+1(2p - q)Hn+2Hn+3 . 

The following identities may be proved by induction: 
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n 
( Z 3 7 ) 2 E <-1>kHm+3k = (-^nHm+3n+1+Hm-2 (m - 2,3, - j 

k=0 

n 

(138) 3 J2 (~VkHm+4k = (-irHm+4n+2 + Hm-2 (m = 2,3, »J 
k=0 

n. 

(2.39) 1t £ (~ »kHm+5k = (-»" [5Hm+5n+1 + 2Hm+5n] + 4Hm - 5Hm„, 
k=0 

(m = 1,2,-) 
n 

(2.40) 4 22 Hk»2k+1 = H2n+3Hn + H2nH2n+3-2q2 

k=0 

n 
(2M) 3 E (-f^kffm+2k - (-nnHm+2nHm+2n+2 + HmHm^2 (m = 2,3, •-) 

k=0 

n 
{2M) 7 E ^>kHm+4k = (~-1)nHm+4nHm+4n+4

 + HmHm~4 (m = 4,5, •••) 
k=0 

n 

(2.43) 2 J ] Hk+2Hi+1 = Hn+3Hn+2Hn+1 ~pq(p+q) 
k=0 

n 

(2.44) 2 52 i-VkHk"k+1 = (-1)nHn+2Hn+1Hn+pq(P -q) . 
k=0 

Zeitlin [11] has also examined numerous powej identities for the sequence \Hn\ as special cases of even power 
identities found for the generalized sequence | co„ [ used in Horadam [7] , and earlier by Tagiuri (Dickson [2]). 

As seen in Horadam [7], the generalized Fibonacci sequence \Hn\ is a particular case of generalized sequence 
| <^n\ for a = q, b = p, r=1 and s = -h Hence applying these results to (3.1 )# Theorem I, of Zeitlin [11] 
yields, for n - 0,1, — (see (Z47) below): 

(2.45) (-1)mrn 52 l-»mnbk
2t) ( - f W W - * ; + „ 0 (i - y/=7) 

k=0 

- M / " * \m0+.mt(4r- + t>*(»j(_5rdr^ ^ 

However, 

/ 112mtr-mt(t+ 1)+mt(t+1)/2 

/jimt(4r-t~1)/2 _ /•ji2mtr-mt(t+1}/2 

l 
= (_i)mt(t+1)/2 

since 2mtr and mtft + 1)* are always even. Hence, we may rewrite (2.45) as 
*This result for mt(t + 1} may be easily verified by considering the table 

m i t+1 mt(t + 1} 
o d d - - — o d d — — even-—--̂ _ . , J > even even—-—— even —-——odd --""^ 
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k=0 

where ng = ft 7, •••; m,t = 1, 2, - , r = 0,1, - , t, and where the 

*°{-i) k = 0,1, • • • ; * , 

are defined (as a special case of (2.9) of Zeitiin [11]) by 

(2.47) £ bp> ( - j-) v2t'k = n (y2 - <-DmkL2mky + 1) . 

If we now consider r = t = 1 in (2.46) and then (2.47), then (2=46) reduces to 

(2.48) i-1)mn [H2
m(n+2)+na - L2mH2

m(n+1}+n<t+H
2

mn+na 1 = 2(-1)m*n*dF2 • 

on calculation. This corresponds to (4.5) of Zeitiin [11]. 
Similarly,, we can obtain (4.6) to (4.16) of Zeitiin [11] by the correct substitutions into (2.46) and (2.47), where 

as already mentioned, (4.6) is our previous identity, (2.9). Identities (4.7) to (4.16) of Zeitiin should be noted for 
reference and comparison. 

1 FOURTH POWER GENERALIZED FIBONACCI IDENTITIES 
, Hoggatt and Bicknell [5] have derived numerous identities involving the fourth power of Fibonacci numbers 
\Fn\ "from Pascal's triangle. 

By considering the same matrices 5 and U where u/ = Hg = q and U2 ='Hj = ' p, i.e., 

(3.1) 

0 0 0 0 f 
0 0 0 14 
0 0 13 6 
0 1 2 3 4 
1 1 1 1 1 

and U = (ajj) is the column matrix defined by 

(3.2) a l 7=( ,-i , ) H%H*}1 , 1=1,2,-., 5, 

the following identities for the fourth' power of generalized Fibonacci numbers may easily be verified by proceeding 
as in Hoggatt and Bicknell [ 5 ] : 

(3.3) % ( - V i ( * i ' ) H h = 25n(Hi,<J-"&HJ+l) = A/ <»Y> 

4n+2 . 

(3.4) E f-^'( 4nt2 ) "h = 25n(H£n+r2Hl+M + Hl+j+2) = Aj-AjH 

i=0 

4n*4 7 + \ 

1=0 =AJ-3A/+I+3AJ+2-AJ+3 . 
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Noting that the coefficients of the terms involving the A's on the right-hand side of the above equations are the 
first four rows of Pascal's triangle, we deduce the general identity 

4n+k 

i*=0 
= Aj-Ik- DAfH + - + (-1)k-1Aj+k • 

Similarly, we have 
4n+5 

(3.8) £ (-1)1 ( Y 5 ) ^r25n+UH4
2n+l+2-M

4
2n+i+3) = 25A!+2l 

i=0 

which results in the recurrence relation 
(3.9) Aj - 4Aj+1 + 6Aj+2 - 4Aj+3 + Aj+4 = 25Aj+2 
i.e., 
(3.10) Aj-4AJH - WAj+2-4Al+3 + Aj+4 = 0 

on equating (3.8) and (3.7) with k = 5. Defining 

(3.11) G(j) = H4
+j - 4H4+j+1 - WH4

n+i+2 - 4H4
+j+3 + H4+/+4 

yields 
(3.12) 25n{GQ)-G(j+1)\ = Aj-4Aj+1-19Aj+2-4Aj+3 + Aj+4 

= 0 on using (3.10). 
Hence, G(j) is a constant. 

When n = j = Of (3.11) reduces to 
(3.13) G(O) = -6d2 , 

which leads to identity (2.9) which is in turn a generalization of a result due to Zeitlin [10] while also being a ver-
ification of a result due to Hoggatt and Bicknell [5] and also Zeitlin [11]. 

4. FURTHER GENERALIZED FIBONACCI IDENTITIES 
In addition to the numerous identities of, say, Carlitzand Ferns [1 ] , Iyer [4 ] , Zietlin [10], [11], Subba Rao [8] 

and Hoggatt and Bicknell [5 ] , Harris [3] has also listed many identities for the Fibonacci sequence | Fn \ which 
may be generalized to yield new identities for the generalized Fibonacci sequence | Hn \ . 

n 
(4.1) Y<kHk = nHn+2-Hn+3 + H3 

k=0 

If oof: ff 
ukAvk = A(ukvk)-vk+1Auk 

(A is the difference operator) then 
n n 

^ ukAvk = [ukvk]
ng1 - J2 Vk+1&"k • 

k=0 k=0 

Let uk = k and Avk = Hk. Then 
k-1 

Auk=1 and vk = ] T /// = Hk+1 -p. 
i=0 

Omitting the constant -p from vk , we find 
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n n 

Y, kHk = [kHk+1]
n

0
+1 - J^ 1-Hk+2 = (n+Wn+2-Hn+4-p-H7-H0 = nHn+2-Hn+3+(2p+ql 

k=0 k*D 

Using this technique, we also have the following identities: 
n 

(4.2) ] T (-1)kkHk = (-1)n(n + 1)Hn.f + (~1)n'1Hn.2 - H.3 

k=0 

n 

(4.3) X kH2k = (n+ 1)H2n+i ~ H2n+2 + H0 

k=0 

n 

(4.4) J^ kH2k+l = <"+ 1)H2n+2 - H2n+3 + H1 

k=0 

' n 

(4.5) Yl k2H2k = (n2 + 2)H2n+1~(2n+1)H2n-(2o-q) 
k=0 

n 

(4.6) £ k2H2kH = (n2 + 2)H2n+2 - (2n + 1)H2n+1 - (p + 2q) 
k=0 

n k 

(4.7) £ X HS= H^4'(n + 3)p-q 
k=0 j=0 

n 

(4.8) £ k2Hk - (n2 + 2)Hn+2 - (2n - 3)Hn+3 - H6 

k=0 

(4.9) ]jjT k2Hk = (n3+6n- 12)Hn+2 - (3n2 - 9n + 19)Hn+3 + (50p +31q) 
k=0 

(4.10) ^ k4Hk = (n4 + 12n2 - 48n + 98)Hn+2 

k=0 

+ (4n3 - Wn2 + 76n - 159)Hn+3 - (416p + 257q) 

n 
(4.11) 5 J^ (~HkH2k = (-1)n(H2n+2+H2n) -(p- 3q) 

k=0 

n 

(4.12) 5 ^ {-t)kH2k+i = l-nnlH2n+3 + H2n+1) + (2p-q) 
k=0 

(4.13) 5 J^ (~f)kkH2k = (-Vn(nH2n+2 + (n+VH2„}-q 
k=0 
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(4.14) 5 ^ (-t}kkH2k+i = (-1)n(nH2n+3
 + (n+nH2nH)-P 

n 

(4.15) 4 £ (-1)kkHm+3k = 2(-7)n(n + Wm+3n+f - W H ^ ^ - H^ (m = 2, 3, •».) 
k=0 

and so on. 
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[Continued from Page 271.] 

where X is the largest root of 
(3) x4-x3 -3x2+x+ 1 = O. 

The astonishing appearance of (1) stems from a.peculiarity of (3). The Galois group of this quartic is the octic 
group (the symmetries of a square), and its resolvent cubic is therefore reducible: 
(4) P-8z-7 = (z+JMz2-!-/) = O. 
The common discriminant of (3) arid (4) equals 725 = 52*29. While the quartic field QfXJ contains Q(sJE) as a 
subfield it does not contain Q(sj29l Yet X can be computed from any root of (4). The rational root z = -1 
gives X=(A + 1)/4 while z = (1 + ̂ /29)/2 gives X=(B+1)/4. 

It Is clear that we can construct any number of such Incredible Identities from other quartscs having an octic group. 
For example 

x4-x3-5x2-x+1 = O 
has the discriminant 4205 = 292 • 5, and so the two expressions involve s/s and %/29~ once again. But this time 
Q(y/&) Is In Q(X) and Q(y/s) Is not. 

*MM** 


