ARGAND DIAGRAMS OF EXTENDED FIBONACCI AND LUCAS NUMBERS

F. J. WUNDERLICH, D. E. SHAW, and M. J. HONES
Department of Physics, Villanova University, Villanova, PennsyIvania 19085

Numerous extensions of the Fibonacci and Lucas Numbers have been reported in the literature [1-6]. In this paper we present a computer-generated plot of the complex representation of the Fibonacci and Lucas Numbers. The complex representation of the Fibonacci Numbers is given by $[5,6]$.

$$
\mathrm{F}(\mathrm{x})=\frac{\phi^{x}-\phi^{-x}[\cos (x \pi)+i \sin (x \pi)]}{\sqrt{5}}
$$

where

$$
\begin{gathered}
\phi=\frac{1+\sqrt{5}}{2} \quad \text { and } \quad F(-x)=(-1)^{n+1} F(x), \\
\operatorname{Re}[F(x)]=\frac{1}{\sqrt{5}}\left\{\phi^{x}-\phi^{-x} \cos (\pi x)\right\}
\end{gathered}
$$

and

$$
\operatorname{Im}[F(x)]=\frac{1}{\sqrt{5}}\left\{-\phi^{-x} \cdot \sin (\pi x)\right\}
$$

The Fibonacci identity: $F(x)=F(x-1)+F(x-2)$ is preserved for the complex parts of $F(x)$:

$$
\operatorname{Re}[F(x)]=\operatorname{Re}[F(x-1)]+\operatorname{Re}[F(x-2)]
$$

and

$$
\operatorname{Im}[F(x)]=\operatorname{Im}[F(x-1)]+\operatorname{Im}[F(x-2)]
$$

Figure 1 is a computer-generated Argand plot of $F(x)$ in the range $-5<x<+5$.
The branch of the curve for positive x approaches the real axis as x increases. Defining the tangent angle of the curve as:

$$
\psi=\tan ^{-1}\left\{\frac{\operatorname{lm}[F(x)]}{\operatorname{Re}[F(x)]}\right\} ;
$$

this angle approaches zero for large positive x since

$$
\lim _{x \rightarrow \infty}=\operatorname{Im}[F(x)]=0
$$

The negative branch of the curve approaches a logarithmic spiral for x large and negative. The modulus r is given by:

$$
r=\left\{R e^{2}[F(x)]+I m^{2}[F(x)]\right\}^{1 / 2}
$$

in the limit

$$
r \approx \frac{\phi-\underline{x}}{\sqrt{5}} ; \quad \psi \approx \pi x, \quad r \approx \frac{1}{\sqrt{5}}\left\{\phi^{-\psi / \pi}\right\}
$$

therefore,

Fig. 1 Computer-Generated Argand Plot of the Fibonacci Function

Fig. 2 Computer-Generated Argand Plot of the Lucas Function
where

$$
k=\ln (\phi / \sqrt{5}) \quad \text { and } \quad r \approx e^{-(\psi k / \pi)}=e^{-k x} .
$$

Similarly, the Lucas number identity:

$$
L(x)=F(x+1)+F(x-1)
$$

leads directly to [6]:

$$
L(x)=\phi^{x}+(-1)^{x} \phi^{-x}
$$

and the complex representation of the Lucas Numbers follows

$$
L(x)=\phi^{x}+\phi^{-x}(\cos \pi x+i \sin \pi x)
$$

with

$$
\operatorname{Re}[L(x)]=\phi^{x}+\phi^{-x} \cos \pi x \quad \text { and } \quad \operatorname{Im}[L(x)]=\phi^{-x} \sin \pi x
$$

Note:

$$
\operatorname{Im}[L(x)]=\frac{-1}{\sqrt{5}} \operatorname{Im}[F(x)] .
$$

As with the previous case for n large and positive, the positive branch of the Lucas number curve approaches the Real axis. Again, the negative branch approaches a logarithmic spiral for n large and negative.

$$
\psi \approx \pi x, \quad r \approx \phi^{-(\psi / \pi)}, \quad \ln r \approx-(\psi / \pi) / n \phi, \quad r \cong e^{-(\psi / \pi) \phi}=e^{-\phi x}
$$

REFERENCES

i. W.G. Brady, Problem B-228, The Fibonacci Quarterly, Vol. 10, No. 2 (Feb. 1972), p. 218.
2. J.H. Halton, "On a General Fibonacci Identity," The Fibonacci Quarterly, Vol. 3, No. 1 (Feb. 1965), pp. 31-43.
3. R.L. Heimer, "A General Fibonacci Function," The Fibonacci Quarterly, Vol. 5, No. 5 (Dec. 1967), pp. 481-483.
4. E. Halsey, "The Fibonacci Number F_{u} where u is not an Integer," The Fibonacci Quarterly, Vol. 3, No. 2 (April 1965), pp. 147-152.
5. F. Parker, "A Fibonacci Function," The Fibonacci Quarterly, Vol. 6, No. 1 (Feb. 1968), pp. 1-2.
6. A.M. Scott, "Continuous Extensions of Fibonacci Identities," The Fibonacci Quarterly, Vol. 6, No. 4 (Oct. 1968) pp. 245-249.

