ON THE SET OF DIVISORS OF A NUMBER

MURRAY HOCHBERG Brooklyn College (CUNY), Brooklyn, New York 11210

If z is a natural number and if $z = p_1^{\lambda_1} p_2^{\lambda_2} \cdots p_j^{\lambda_j}$ is its factorization into primes, then the sum $\lambda_1 + \lambda_2 + \cdots + \lambda_j$ will be called the *degree* of z. Let m be a squarefree natural number of degree n, i.e., m is the product of n different primes. Let the set of all divisors of m of degree k be denoted by D_k , $k = 0, 1, \cdots, n$; clearly, the cardinality of D_k is equal to C(n,k), where C(n,k) denotes the binomial coefficient, n!/[k!(n-k)!]. Two natural numbers δ and ζ are said to differ in exactly one factor if $\delta = rp_1$ and $\zeta = rp_2$, where p_1 and p_2 are prime numbers, with $p_1 \neq p_2$. Let a be a natural number that is a divisor of m. A natural number β is said to be an extension of a if β is a divisor of m, a is a divisor of β and the degree of β is one more than the degree of a- A natural number γ is said to be a restriction of a if γ is a divisor of m, γ is a divisor of a and the degree of γ is one less than the degree of a. If A is a non-empty set of divisors of m, we shall denote by A^+ the set of all extensions of the divisors in A; if $A = \phi$, we define $A^+ = \phi$. The cardinality of any set A will be denoted by |A| and we use the superscript "c" to denote complementation.

In this note, the author gives a relatively short and interesting proof of the following theorem:

Theorem. Let A be a collection of divisors of a squarefree natural number m such that each divisor in A has degree k, $0 \le k \le n$. Then

(1)
$$|A^+| \ge \frac{|A|C(n,k+1)}{C(n,k)} \quad .$$

and for $A \neq \phi$ equality holds if and only if |A| = C(n,k).

Before proving the theorem, we need to prove one lemma that is also of independent interest.

Lemma. Let A be a non-empty collection of divisors of a squarefree natural number m such that each number in A has degree k, 0 < k < n, and |A| < C(n,k). Then there exists natural numbers $a \in A$ and $\beta \in A^c \cap D_k$ such that a and β differ in exactly one factor.

Proof. Let v_o be an arbitrary number in A. Since |A| < C(n,k), there exists a number $\delta \in A^c$ with the degree of δ equal to k. Let q be the greatest common divisor of v_o and of δ and let the degree of q be equal to ω . Then

$$\frac{\nu_o}{\delta} = \frac{t_1 t_2 \cdots t_{k-\omega}}{s_1 s_2 \cdots s_{k-\omega}}, \quad t_i \neq s_j$$

where $i_{ij} = 1, 2, \dots, k - \omega$. We now define recursively a finite sequence of numbers by setting

$$\nu_j = \nu_{j-1} \left(\frac{s_j}{t_j} \right), \qquad j = 1, 2, \cdots, k - \omega.$$

Plainly, $v_j \in D_k$, v_{j-1} and v_j differ in exactly one factor and $v_{k-\omega} = \delta$. Since the first number in the sequence v_o , $v_1, \dots, v_{k-\omega}$ is in A and the last number is in A^c , there exist consecutive numbers v_{j_0-1} , v_{j_0} such that $v_{j_0-1} \in A$ and $v_{j_0} \in A^c$; these can be taken to be, respectively, the numbers a and β of the lemma.

We now prove the previously stated theorem.

Proof. Since (1) holds trivially when either $A = \phi$ or k = n, we may assume that $A \neq \phi$ and k < n. Consider the set of ordered pairs,

$$E = \{(\alpha, \beta) : \alpha \in A, \beta \text{ is an extension of } \alpha\}$$

Since each number $a \in A$ has precisely n - k extensions, |E| = |A|(n - k). If we now set

it is clear that $E \subseteq F$ and $|F| = (k+1)|A^+|$. Hence,

$$(k+1)|A^+| \ge |A|(n-k),$$

which is equivalent to (1). If |A| = C(n,k), then

$$C(n,k+1) \ge |A^+| \ge C(n,k+1)$$
,

so that equality holds in (1).

Suppose conversely that $A \neq \phi$ and

(2)

(3)

$$|A^{+}| = \frac{|A|C(n, k+1)}{C(n, k)} = \frac{|A|(n-k)}{k+1}$$

We wish to prove that |A| = C(n,k); since this is trivial for the cases k = 0 and k = n, we may restrict attention to integers k such that 0 < k < n. If |A| < C(n,k), by the lemma there are numbers $a \in A$, $\beta \in A^c \cap D_k$ such that a and β differ in exactly one factor. Let $a = rp_1$ and $\beta = rp_2$, with $p_1 \neq p_2$, and put $\gamma = rp_1p_2$. Then $\gamma \in \gamma$ A^+ and $(\beta,\gamma) \in E^{c} \cap F$.

On the other hand, (2) implies that

$$|F| = (k + 1)|A^+| = |A|(n - k) = |E|$$

Since $E \subseteq F$, we conclude that E = F, which contradicts (3). Thus, |A| = C(n,k).

Recently, it was communicated to the author that the second part of the theorem with m any integer and with $|D_k|$ in place of C(n,k) is false. For example, if m = 12, k = 1, $A = \{3\}$, then $|D_k| = |D_{k+1}| = 2$, $A^+ = \{6\}$. Thus,

$$|A^+| = (|A| | D_{k+1} |) / |D_k|$$
 and yet

 $A \neq D_k$. Nevertheless, it is the author's conjecture that the first part of the theorem remains true if one omits the hypothesis that m is a squarefree number and if one substitutes $|D_k|$ for C(n,k). However, the above assertion has not been proved completely by the author.

REFERENCES

- 1. N.G. deBruijn, Ca. van Ebbenhorst Tengbergen and D. Kruysijk, "On the Set of Divisors of a Number," Nieuw Arch. Wiskunde (2) 23, (1951), pp. 191-193.
- 2. E. Sperner, "Ein Satz über Untermengen einer endlichen Menge," Math. Z., 27 (1928), pp. 544-548.

364