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If z is a natural number and if z=pi1pfy —Pjl is its factorization into primes, then the sum X/ + \2
 + '" + \ " 

will be called the degree of z. Let m be a squarefree natural number of degree /?, i.e., m is the product of n dif-
ferent primes. Let the set of all divisors of m of degree k be denoted by Dk, k = Q, /, •,/?; clearly,the cardinality 
of Dk is equal to C(n,k), where C(nJ<) denotes the binomial coefficient, n!/[k!(n - k)!]. Two natural numbers 
5 and f are said to differ in exactly one factorif § = rpi and f= rp2 , where pi and P2 are prime numbers, with 
Pi ?P2- Let a be a natural number that is a divisor of m. A natural number |3 is said to be an extension of a if 0 is 
a divisor of m, a is a divisor of |3 and the degree of j3 is one more than the degree of a- A natural number 7 is said 
to be a restriction of a if 7 is a divisor of m, 7 is a divisor of a and the degree of 7 is one less than the degree of 
a . If A is a non-empty set of divisors of m, we shall denote by A+ the set of all extensions of the divisors in A; if 
A = 0, we define A+ = 0* The cardinality of any set A will be denoted by \A\ and we use the superscript "c" to 
denote complementation. 

In this note, the author gives a relatively short and interesting proof of the following theorem: 
Theorem. Let A be a collection of divisors of a squarefree natural number m such that each divisor in A has de-

gree k, 0<k <n. Then 

(1) \A+\ > \AWnfk+1) 
C(n,k) 

and for A ^ 0 equality holds if and only if \A\ = C(n,k). 
Before proving the theorem, we need to prove one lemma that is also of independent interest. 
Lemma. Let A be a non-empty collection of divisors of a squarefree natural number m such that each number in 

A has degree k, Q<k<n, and \A\<C(n,k). Then there exists natural numbers ae>4 and |3e / l c nZ7^ such that 
a and |8 differ in exactly one factor. 

Proof. Let vQ be an arbitrary number in A Since \A\<C(n,k), there exists a number 8<EAC with the degree of 
5 equal to k. Let q be the greatest dommon divisor of vQ and of 5 and let the degree of q be equal to co. Then 

^ o = tit2~tk„oj , 

where i,j = 1, 2, - , k - co. We now define recursively a finite sequence of numbers by setting 

V; = VH[ £], j = 1,2,-,k-U. 

Plainly, Vj<aDk, v-^ and Vj differ in exactly one factor and ^ . - o ) = S . Since the first number in the sequence vQ, 
P/, ••'•, *>fc-co isin A and the last number is in Ac, there exist consecutive numbers Vj0-1, Vj0 such that VJQ_I e A 
and V; e Ac\ these can be taken to be, respectively, the numbers a and |3 of the lemma. 

Jo 

We now prove the previously stated theorem. 
Proof. Since (1) holds trivially when either A=<j> or k = n, we may assume that A ^ 0 and k<n. Consider the 

set of ordered pairs, 
E = -J (a,$): a G A, $ is an extension of a I 

Since each number CL<EA has precisely n - k extensions, |£| = \A\(n - k). Ifwenowset 
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F = I (a,p) : (5<=A+, a is a restriction of j3 [ , 
it is clear that EcF and \F\ = (k+1)\A+\, Hence, 

(k+1)\A+\ > \A\(n-k), 
which is equivalent to (1). 

If \A\ = C(n,k), then 
C(n,k+1) > \A+\ > C(n,k+1), 

so that equality holds in (1). 
Suppose conversely that A £ 0 and 

(?) 1/1*1 - \A\C(n.k+1) - j/||fo-A:J 

We wish to prove that \A\ = C(n,k); since this is trivial for the cases k = 0 and k = n, we may restrict attention 
to integers k such that 0<k<n. If M I < C(n,k), by the lemma there are numbers a(EA, fi<EAcnDk such 
that a and j3 differ in exactly one factor. Let a = rp<$ and $=rp2, with p?^P2, and put y=rptP2. Then y e 
4 * and 
(3) M e £ c n f . 
On the other hand, (2) implies that 

\F\ = (k+1)\A+\ = \A\(n-k) = \E\ . 

Since EcF, we conclude that E = F, which contradicts (3). Thus, \A\ = C(n,k). 
Recently, it was communicated to the author that the second part of the theorem with m any integer and with 

\Dk\ in place of C(n,k) is false. For exampleJf m=12, k=1, A = \3\, then \Dk\ = \Dk+i\ = 2, A+=\6^„ 
Thus, 

\A+\ = (\A\\Dk+1\)/\Dk\ and yet 
A ?Dk. Nevertheless, it is the author's conjecture that the first part of the theorem remains true if one omits the 
hypothesis that m is a squarefree number and if one substitutes \Dk\ for C(n,k). However, the above assertion 
has not been proved completely by the author, 
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