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In this note all letters will denote non-negative integers. A number 
N = nr10k + n2*10k~1 + - + nk_r10 + nk 

(abbreviated N = nin2~nk) will be called a /?»a /w-cvcle whpnpwpr 
P(nk-m-unk-m~2> •^k.7nkn1 -nk.m) = q(n1n2-nk! . 

Since four parameters \ p,q,m,k\ are involved, some rather interesting questions and conjectures arise naturally. 
The problem of Trigg [3], for examplê  yielded 428571, a distinct (i.e., the digits are distinctly 5-cycle when 
k = 6, and /• / /w-cycles which are /?-linked were considered in [2]. Klamkin [1] recently characterized the smal-
lest hB /-cycles.. Here we extend some of these concepts, show how to generate various p-q w-cycles, and actually 
produce the smallest hq /-cycles (q = 1,2,—, 9) together with some of their properties. As a special case of our 
more generalized results, we present a much faster method than Wlodarski [4] for obtaining the smallest hq 
/-cycles with nk= q . 

For notation, nyn2 means /?/ times n2, whereas njn2 will denote the two-digit number 10n7+n2. For a 
number r-s = n7n2r we shall use (r-s)io = n<i and (r°s)i=n2, 

1. hq /-CYCLES 
We first note that for each q (q= 1,2,.—, 9) and each n7 <9/q, there exists a smallest (unique non-repeating) 

hq 7-cycle 
Nq(n<j) = n1n2- nkq(ni) 

(kq(nlh the number of digits in Ngf/ij) will depend on q ana n7l Indeed, assume that kq(n7) isnotfixedand 
note that nkq(ni) = q»n1^0 when n^Q. Then Nq(nj) is readily obtained by the following simple multiplication: 

"1 "k-2 nk-l nk 
N = n - [q«nk„1 + (q*rik)1o]1 (q*"kh qa" 

qN = q-n- [q«nk„2+ [q*nk„1 + (q*nk)w]w^ [q'nk^+fq^nk)10]; (q-nk)1 

1 

EXAMPLE 1. 025641 and 205128 are h4 /-cycles, whereas 142857 h a h5 /-cycle. These numbers 
were obtained from 

nt nk4(2} n1 nk.8(i) 

N = 20512 8 N = 14285 7 
4N = 8205 1 2 = (4<8)7 3N = 7 14 2 8 5=(5-7)% 

For n-i=1, the above procedure yields the following hq /-cycles Nq( 1). (Note that by simply placing n7 = / 
after nqk(7)r one obtains the corresponding hq /-cycles Nq(0) = 0113114-q1). 
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q Nq(1) kq(1) 

1 u,u where u = 0, 1,2, -,9 2 
2 105263157894736842 18 
3 1034482758620689655172413793 28 
4 102564 6 
5 102040816326530612244897959183673469387755 42 
6 1016949152542372881355932203389830508474576271186440677966 58 
7 1014492753623188405797 22 
8 1012658227848 13 
9 10112359550561797752808988764044943820224719 44 

We note here that there does not exist a largest hq 7-cycle Nq(n7) > 1 since n7n2 -nkn7n2 ».nk is a hq h 
cycle for each hq /-cycle Nq{ni). 

EXAMPLE 2. The smallest (nonzero) hq /-cycles are given by 

Ni(D, Nq(0) iorq = 2,3,4,5,6,7,8,9 

Indeed, 
N2(4) > N2(2) > N2(2) > N2(1) 

N3(3) > N3(2) and N4(2) = 205128 > N4{1)>N4(0). 

For q>5, the only nonrepeating hq /-cycles are Nq(0) and Nq(1). 
We conclude this section by mentioning that the smallest hq /-cycles whose last term nk (nl)

 = q a r e precisely 
the numbers Nq(1) in the above table. 

2. p-q /-CYCLES 

Each hq /-cycle is a p-p*q /-cycle for every integer p, and every p*q /-cycle is clearly a 

(p,q) (p,q) 

/-cycle. To obtain p»q /-cycles N = n7n2 — nk in general, let 

N' = nkn7 - nk_7 . 

Then pN'=qN requires that nk<n7 when p >q and nk>n7 for p<q, and since 

(p-nk.1)i = (q-nk)i , 

we use nk as a sieve for a generalization of the multiplication given in Section 1. Thus, keeping 

(P'tik-l), = (q-nk)x, [p'nk-2 + (p-nk_j)iQ]t = [q-nk„7 + (q-nk)Ji , 

etc., we proceed until the mth position (denoted by a vertical line preceeding the nk.m
th digit of N), where the 

sequence of digits begin to repeat anew in the m + 1st position. 

N* = nk 

pN' =; . . . . . . . . . 

qM = . . . . . . . . . . 

N = n7 

nk~2 nk-1 

lp^k-2 + (P'nk-l\Jx (P'Hk-l), 

[q'nk_7+(q-nk)Ji (q-nk)x 

nk-1 nk 

EXAMPLES, (i) 162 is a 3-4 /-cycle. 
(U) 21 is a 7-4 /-cycle. 
(iii) There does not exist a 5>8 /-cycle. 

(i) Since 
(3.nk_7{ = (4.nk)x 



1974] P'Q M-CYCLES, A GENERALIZED NUMBER PROBLEM 326 

and since nk>nv consider nk = 2 (therefore nk_1 = 6). Then the above multiplication yields 

N* = 2 1 n2 n3 - nk„3 nk_2 6 

3N'= 8 

4N = 4 8 

N = 1 112 n3 n4 nk_2 6 2 

Since 
(3nk_2+iy =4 - nk_2= 1 

and 
(3nk-3)x = 6 => nk_3 = 2 , 

3N' = 3(2 1 n3 n4 -\2 1 6) 

6 4 8 

6 4 8 

4N = 4(1 n2 n3 n4 ~\l 6 2) 

from which it readily follows that 162 is a 3*4 /-cycle. 
(ii) (7nk„i)i = (4nk)i is satisfied by the pairs nk-.-t,nk 

nk 123456789 

nk„7 2468024 6 8 

Using the first pair yields 

7( 1 n7 n2 - I 7 2) 

8 4 
8 4 

4(n1 n2 n3 - j 2 1) , 

The numbers 42,63 and 84 are also 7'4 /-cycles. 
(iii) None of the pairs of values satisfying 

(5nk„1)1 = (8nk)1 

yield 5N' = 8N. 

3. P-Q M-CYCLES 
The procedure of Section 2, appropriately modified, also applies to p>q /77-cycles in general. We demonstrate this in 
EXAMPLE 4. Find a distinct 3-4 J-cycle for k = 6. 
For 

(4nk)1 = (3nk-3)<i 

which is satisfied by numerous values, first consider nk = 1 and nk„3 = 8. Then 

3(nk„2 nk-1 1 nj n2 - nk„6 nk„5 nk„4 8) 

4 
4 

4(n1 n2 n3 n4 n5 ••• 8 nk_2 ^k-1 1) 

yields 
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3(nk-2 nk-7 1 /?/ n2 -~\ 5 7 14 28) 

7 14 2 8 4 

7 14 2 8 4 

4(nf n2 n3 n4 n5 - I 4 2 8 5 7 1) 

so that 428571 is a solution to our probSem. 
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THE APOLLONIUS.PROBLEM 

CHARLES W.TRIGG 
San Diego, California 92100 

Problem 29 on page 216 of E.W. Hobson's/1 Treatise on Plane Trigonometry/' Cambridge University Press (1918) 
reads: "Three circles, whose radii are a, b, c, touch each other externally; prove that the radii of the two circles 
which can be drawn to touch the three are 

abc/ffbc +ca+ ab) ± 2^/abcfa +b +c)]»" 

Horner [1] states "The formula...is due to Col. Beard" [2]. That the formula is incorrect is evident upon putting 
a = b =c, whereupon the radii become a/(3 ± 2^/3), so that one of them is negative. Horner recognized this when 
he stated, "The negative sign gives R (absolute value)...". 

The correct formula has been shown [3] to be: 
abc/[2s/abc(a +b+c) ± (ab +bc +ca)L 
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