P. Q M-CYCLES, A GENERALIZED NUMBER PROBLEM

WARREN PAGE

City University of New York (New York City Community College), Brooklyn, New York 11201

In this note all letters will denote non-negative integers. A number

$$N = n_1 \cdot 10^{k} + n_2 \cdot 10^{k-1} + \dots + n_{k-1} \cdot 10 + n_k$$

(abbreviated $N = n_1 n_2 \cdots n_k$) will be called a $p \cdot q$ *m*-cycle whenever

 $p(n_{k-m-1}, n_{k-m-2}, \dots, n_{k-1}n_kn_1 \dots n_{k-m}) = q(n_1n_2 \dots n_k)$

Since four parameters $\{p,q,m,k\}$ are involved, some rather interesting questions and conjectures arise naturally. The problem of Trigg [3], for example, yielded 428571, a distinct (i.e., the digits are distinct) 3-4 3-cycle when k = 6, and 1-1 m-cycles which are n-linked were considered in [2]. Klamkin [1] recently characterized the smallest 1-6 1-cycles. Here we extend some of these concepts, show how to generate various $p \cdot q$ m-cycles, and actually produce the smallest 1-q 1-cycles (q = 1, 2, ..., 9) together with some of their properties. As a special case of our more generalized results, we present a much faster method than Wlodarski [4] for obtaining the smallest 1-q 1-cycles with $n_k = q$.

For notation, $n_1 \cdot n_2$ means n_1 times n_2 , whereas $n_1 n_2$ will denote the two-digit number $10n_1 + n_2$. For a number $r \cdot s = n_1 n_2$, we shall use $(r \cdot s)_{10} = n_1$ and $(r \cdot s)_1 = n_2$.

1. 1.q 1-CYCLES

We first note that for each q (q = 1, 2, ..., 9) and each $n_1 \leq 9/q$, there exists a smallest (unique non-repeating) 1•q 1-cycle

$$N_q(n_1) = n_1 n_2 \cdots n_{k_q(n_1)}$$

 $(k_q(n_1))$, the number of digits in $N_q(n_1)$ will depend on q and n_1). Indeed, assume that $k_q(n_1)$ is not fixed and note that $n_{k_q(n_1)} = q \cdot n_1 \neq 0$ when $n_1 \neq 0$. Then $N_q(n_1)$ is readily obtained by the following simple multiplication:

n ₁	n _{k-2}	n _{k-1}	n _k
N = n …	$[q \circ n_{k-1} + (q \circ n_k)_{10}]_1$	$(q \cdot n_k)_1$	q∙n
$qN \neq q \cdot n \cdots$	$\left\{q \cdot n_{k-2} + [q \cdot n_{k-1} + (q \cdot n_k)_{10}]_{10}\right\}_{1}$	$[q \cdot n_{k-1} + (q \cdot n_k)_{10}]_1$	(q•n _k) ₁

EXAMPLE 1. 025641 and 205128 are 1.4 1-cycles, whereas 142857 is a 1.5 1-cycle. These numbers were obtained from

n.1	n _{k4} (2)	n ₁	$n_{K_5}(1)$
N = 20512	8	N = 14285	7
4N = 82051	$2 = (4 \cdot 8)_1$	3N = 71428	5 = (5.7)

For $n_1 = 1$, the above procedure yields the following $1 \cdot q$ 1-cycles $N_q(1)$. (Note that by simply placing $n_1 = 1$ after $n_{q_k(1)}$, one obtains the corresponding $1 \cdot q$ 1-cycles $N_q(0) = 0n_3n_4 \cdot q_1$).

q	N _q (1)	$k_q(1)$
1	<i>u,u</i> where <i>u</i> = 0, 1, 2,,9	2
2	105263157894736842	18
3	1034482758620689655172413793	28
4	102564	6
5	102040816326530612244897959183673469387755	42
6	1016949152542372881355932203389830508474576271186440677966	58
7	1014492753623188405797	22
8	1012658227848	13
9	10112359550561797752808988764044943820224719	44

We note here that there does not exist a largest 1·q 1-cycle $N_q(n_1) > 1$ since $n_1 n_2 \cdots n_k n_1 n_2 \cdots n_k$ is a 1·q 1-cycle for each 1·q 1-cycle $N_q(n_1)$.

EXAMPLE 2. The smallest (nonzero) $1 \cdot q$ 1-cycles are given by

$$N_1(1), N_q(0)$$
 for $q = 2, 3, 4, 5, 6, 7, 8, 9$

Indeed,

$$N_2(4) > N_2(3) > N_2(2) > N_2(1)$$

 $N_3(3) > N_3(2)$ and $N_4(2) = 205128 > N_4(1) > N_4(0)$.

For $q \ge 5$, the only nonrepeating $1 \cdot q$ 1-cycles are $N_q(0)$ and $N_q(1)$.

We conclude this section by mentioning that the smallest $1 \cdot q$ 1-cycles whose last term $n_{k_q(n_1)} = q$ are precisely the numbers $N_q(1)$ in the above table.

2. $p \cdot q$ 1-CYCLES

Each 1.q 1-cycle is a $p \cdot p \cdot q$ 1-cycle for every integer p, and every $p \cdot q$ 1-cycle is clearly a

$$\frac{p}{(p,q)} \cdot \frac{q}{(p,q)}$$

1-cycle. To obtain $p \cdot q$ 1-cycles $N = n_1 n_2 \cdots n_k$ in general, let

$$N' = n_k n_1 \cdots n_{k-1} .$$

Then pN' = qN requires that $n_k \leq n_1$ when p > q and $n_k \geq n_1$ for p < q, and since

$$(p \cdot n_{k-1}) = (q \cdot n_k)$$
,

we use n_k as a sieve for a generalization of the multiplication given in Section 1. Thus, keeping

$$(p \cdot n_{k-1})_{1} = (q \cdot n_{k})_{1}, \quad [p \cdot n_{k-2} + (p \cdot n_{k-1})_{10}]_{1} = [q \cdot n_{k-1} + (q \cdot n_{k})_{10}]_{1},$$

etc., we proceed until the m^{th} position (denoted by a vertical line preceeding the n_{k-m}^{th} digit of N), where the sequence of digits begin to repeat anew in the $m \neq 1^{st}$ position.

$N' = n_k$		n _{k-2}	n _{k-1}
$pN' = \cdots \cdots$	••	$[p \cdot n_{k-2} + (p \cdot n_{k-1})_{10}]_{1}$	$(p \cdot n_{k-1})_{1}$
$qN = \cdots$	••	$[q \cdot n_{k-1} + (q \cdot n_k)_{10}]_1$	$(q \cdot n_k)_{_1}$
$N = n_1$		n _{k-1}	n _k

EXAMPLE 3. (i) 162 is a 3.4 1-cycle.

(ii) 21 is a 7.4 1-cycle.

(iii) There does not exist a 5.8 1-cycle.

(i) Since

$$(3 \cdot n_{k-1})_1 = (4 \cdot n_k)_1$$
,

and since $n_k > n_1$, consider $n_k = 2$ (therefore $n_{k-1} = 6$). Then the above multiplication yields

Since

and

 $4N = 4(1 n_2 n_3 n_4 \cdots 1 6 2)$

from which it readily follows that 162 is a 3.4 1-cycle.

(ii) $(7n_{k-1})_1 = (4n_k)_1$ is satisfied by the pairs n_{k-1}, n_k

 n_k 1 2 3 4 5 6 7 8 9 n_{k-1} 2 4 6 8 0 2 4 6 8 .

Using the first pair yields

$$7(1 n_1 n_2 \cdots | 1 2) \\ 8 4 \\ 8 4 \\ 4(n_1 n_2 n_3 \cdots | 2 1)$$

The numbers 42, 63 and 84 are also 7.4 1-cycles.

(iii) None of the pairs of values satisfying

$$(5n_{k-1})_1 = (8n_k)_1$$

yield 5N' = 8N.

3. P.Q M-CYCLES

The procedure of Section 2, appropriately modified, also applies to $p \cdot q m$ -cycles in general. We demonstrate this in EXAMPLE 4. Find a distinct 3-4 3-cycle for k = 6. For

$$(4n_k)_1 = (3n_{k-3})_1$$

which is satisfied by numerous values, first consider $n_k = 1$ and $n_{k-3} = 8$. Then

$$3(n_{k-2} n_{k-1} \ 1 \ n_1 \ n_2 \ \cdots \ n_{k-6} \ n_{k-5} \ n_{k-4} \ 8)$$

$$4$$

$$4$$

$$4(n_1 \ n_2 \ n_3 \ n_4 \ n_5 \ \cdots \ 8 \ n_{k-2} \ n_{k-1} \ 1)$$

yields

P-Q M-CYCLES, A GENERALIZED NUMBER PROBLEM

so that 428571 is a solution to our problem.

REFERENCES

1. M.S. Klamkin, "A Number Problem," The Fibonacci Quarterly, Vol. 10, No. 3 (April 1972), p. 324.

2. W. Page, "N-linked M-chains," *Mathematics Magazine*, Vol. 45 (March 1972), p. 101.

3. C.W. Trigg, "A Cryptarithm Problem," Mathematics Magazine, Vol. 45 (January 1972), p. 46.

4. J. Wlodarski, "A Number Problem" The Fibonacci Quarterly, Vol. 9 (April 1971), p. 195.

THE APOLLONIUS PROBLEM

CHARLES W. TRIGG San Diego, California 92109

Problem 29 on page 216 of E.W. Hobson's *A Treatise on Plane Trigonometry,* "Cambridge University Press (1918) reads: "Three circles, whose radii are *a*, *b*, *c*, touch each other externally; prove that the radii of the two circles which can be drawn to touch the three are

$abc/[(bc + ca + ab) \pm 2\sqrt{abc(a + b + c)}]$."

Horner [1] states "The formula...is due to Col. Beard" [2]. That the formula is incorrect is evident upon putting a = b = c, whereupon the radii become $a/(3 \pm 2\sqrt{3})$, so that one of them is negative. Horner recognized this when he stated, "The negative sign gives R (absolute value)...".

The correct formula has been shown [3] to be:

 $abc/[2\sqrt{abc(a + b + c)} \pm (ab + bc + ca)].$

REFERENCES

- 1. Walter W. Horner, "Fibonacci and Apollonius," *The Fibonacci Quarterly*, Vol. 11, No. 5 (Dec. 1973), pp. 541-542.
- 2. Robert S. Beard, "A Variation of the Apollonius Problem," Scripta Mathematica, 21 (March, 1955), pp. 46-47.

3. C.W. Trigg, "Corrected Solution to Problem 2293, School Science and Math., 53 (Jan. 1953), p. 75.
